Genome linking with yeast artificial chromosomes

Nature ◽  
1988 ◽  
Vol 335 (6186) ◽  
pp. 184-186 ◽  
Author(s):  
Alan Coulson ◽  
Robert Waterston ◽  
Jane Kiff ◽  
John Sulston ◽  
Yuji Kohara
Genetics ◽  
1997 ◽  
Vol 147 (2) ◽  
pp. 787-799
Author(s):  
Brad A Rikke ◽  
Dabney K Johnson ◽  
Thomas E Johnson

The murine albino-deletion complex developed as part of the Oak Ridge specific-locus test covers 6–11 cM of chromosome 7. This complex has proven to be a valuable resource for localizing traits to a small target region suitable for positional cloning. In this study, we mapped the endpoints of deletions in this complex using all of the available Mit simple-sequence length polymorphism (SSLP) markers. Concurrently, this mapping has determined the map order of nearly all of the SSLP markers, most of which were previously unresolved. The SSLP-based deletion map was confirmed and genetic distances were determined using the European Collaborative Interspecific Backcross panel of nearly a thousand mice. The average SSLP marker resolution is 0.3–0.4 cM, comparable to the cloning capacity of yeast artificial chromosomes (YACs). The SSLP markers were then used to construct a genetically anchored YAC framework map that further confirms the deletion map. We find that the largest deleted region distal to Tyr is about two to three times larger than the largest proximal deleted region, and the original C3H/101 regions flanking the deletions (moved to an St2A cch/cch background) are smaller than anticipated, which we suggest may result from increased recombination rates immediately flanking the deleted regions.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 673-683
Author(s):  
Jacob Z Dalgaard ◽  
Mukti Banerjee ◽  
M Joan Curcio

Abstract We have developed a powerful new tool for the physical analysis of genomes called Ty1-mediated chromosomal fragmentation and have used the method to map 24 retrotransposon insertions into two different mousederived yeast artificial chromosomes (YACs). Expression of a plasmid-encoded GAL1:Ty1 fusion element marked with the retrotransposition indicator gene, ade2AI, resulted in a high fraction of cells that sustained a single Ty1 insertion marked with ADE2. Strains in which Ty1ADE2 inserted into aYAC were identified by cosegregation of the ADE2 gene with the URA3-marked YAC. Ty1ADE2 elements also carried a site for the endonuclease I-DmoI, which we demonstrate is not present anywhere in the yeast genome. Consequently, I-DmoI cleaved a single chromosome or YAC at the unique site of Ty1ADE2 insertion, allowing rapid mapping of integration events. Our analyses showed that the frequency of Ty1ADE2 integration into YACs is equivalent to or higher than that expected based on random insertion. Remarkably, the 50-kb transcription unit of the mouse Steel locus was shown to be a highly significant hotspot for Ty1 integration. The accessibility of mammalian transcription units to Ty1 insertion stands in contrast to that of yeast transcription units.


1991 ◽  
Vol 10 (4) ◽  
pp. 301-310 ◽  
Author(s):  
M. BELLIS ◽  
A. GÉRARD ◽  
J.P. CHARLIEU ◽  
B. MARÇAIS ◽  
M.E. BRUN ◽  
...  

1991 ◽  
Vol 19 (5) ◽  
pp. 997-1000 ◽  
Author(s):  
Alessandra Cellini ◽  
Rosa M. Lacatena ◽  
Glauco p. tocchini-Valentini

1992 ◽  
Vol 1 (4) ◽  
pp. 273-277 ◽  
Author(s):  
Elmar Maier ◽  
Jörg D. Hoheisel ◽  
Linda McCarthy ◽  
Richard Mott ◽  
Andrei V. Grigoriev ◽  
...  

1992 ◽  
Vol 1 (3) ◽  
pp. 222-225 ◽  
Author(s):  
I.M. Chumakov ◽  
I. Le Gall ◽  
A. Billault ◽  
P. Ougen ◽  
P. Soularue ◽  
...  

1992 ◽  
Vol 12 (12) ◽  
pp. 5563-5570
Author(s):  
S S Schneider ◽  
J L Hiemstra ◽  
B A Zehnbauer ◽  
P Taillon-Miller ◽  
D L Le Paslier ◽  
...  

Oncogene amplification is observed frequently in human cancers, but little is known about the mechanism of gene amplification or the structure of amplified DNA in tumor cells. We have studied the N-myc amplified domain from a representative neuroblastoma cell line, SMS-KAN, and compared the map of the amplicon in this cell line with that seen in normal DNA. The SMS-KAN cell line DNA was cloned into yeast artificial chromosomes (YACs), and clones were identified by screening the YAC library with amplified DNA probes that were obtained previously (B. Zehnbauer, D. Small, G. M. Brodeur, R. Seeger, and B. Vogelstein, Mol. Cell. Biol. 8:522-530, 1988). In addition, YAC clones corresponding to the normal N-myc locus on chromosome 2 were obtained by screening two normal human YAC libraries with these probes, and the restriction maps of the two sets of overlapping YACs were compared. Our results suggest that the amplified domain in this cell line is a approximately 1.2-Mb circular molecule with a head-to-tail configuration, and the physical map of the normal N-myc locus generally is conserved in the amplicon. These results provide a physical map of the amplified domain of a neuroblastoma cell line that has de novo amplification of an oncogene. The head-to-tail organization, the general conservation of the normal physical map in the amplicon, and the extrachromosomal location of the amplified DNA are most consistent with the episome formation-plus-segregation mechanism of gene amplification in these tumors.


Sign in / Sign up

Export Citation Format

Share Document