genome library
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 7 (2) ◽  
pp. 50-54
Author(s):  
Farah Nuriessa Aputri ◽  
Laila Hanum ◽  
Ayu Safitri ◽  
Yuanita Windusari

Culex spp are mosquito vectors that have a very wide distribution capability and are carriers of pathogens that can interfere with human and animal health. The wide distribution makes Culex spp a dangerous threat. DNA extraction is one of the important steps in obtaining genetic information and genetic analysis. Good quality DNA is used for activities such as the use of molecular markers, genome library creation, and sequencing. This study aims to determine the quality, concentration and purity of Culex spp mosquito DNA in Kemelak Bindung Langit Village, OKU Regency. It is hoped that the sample can be used for further research analysis on Mitochondria D-Loop Sequences in Culex spp mosquitoes. Quantitative measurement of DNA in the form of concentration and purity of DNA using Nanodrop Thermo cycle while qualitative DNA using electrophoresis technique. The results of the isolation of the mosquito genome DNA, obtained clear DNA bands without any degradation (smear) and the concentration results for the four samples ranged from 10-100 ng/µL and the DNA purity was good, ranging from 1.8 to 2.00.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amit Kulkarni ◽  
Tiago Ferreira ◽  
Clemens Bretscher ◽  
Annabel Grewenig ◽  
Nazim El-Andaloussi ◽  
...  

AbstractH-1 parvovirus (H-1PV) is a promising anticancer therapy. However, in-depth understanding of its life cycle, including the host cell factors needed for infectivity and oncolysis, is lacking. This understanding may guide the rational design of combination strategies, aid development of more effective viruses, and help identify biomarkers of susceptibility to H-1PV treatment. To identify the host cell factors involved, we carry out siRNA library screening using a druggable genome library. We identify one crucial modulator of H-1PV infection: laminin γ1 (LAMC1). Using loss- and gain-of-function studies, competition experiments, and ELISA, we validate LAMC1 and laminin family members as being essential to H-1PV cell attachment and entry. H-1PV binding to laminins is dependent on their sialic acid moieties and is inhibited by heparin. We show that laminins are differentially expressed in various tumour entities, including glioblastoma. We confirm the expression pattern of laminin γ1 in glioblastoma biopsies by immunohistochemistry. We also provide evidence of a direct correlation between LAMC1 expression levels and H-1PV oncolytic activity in 59 cancer cell lines and in 3D organotypic spheroid cultures with different sensitivities to H-1PV infection. These results support the idea that tumours with elevated levels of γ1 containing laminins are more susceptible to H-1PV-based therapies.


2018 ◽  
Author(s):  
Olga Žilina ◽  
Kadri Rekker ◽  
Lauris Kaplinski ◽  
Martin Sauk ◽  
Priit Paluoja ◽  
...  

AbstractObjectiveThe study aimed to validate a whole-genome sequencing-based NIPT method and our newly developed NIPTmer analysis software with the potential to integrate the pipeline into prenatal clinical care in Estonia.MethodIn total, 447 maternal blood samples were included to the study. Analysis pipeline involved whole-genome library preparation and massively parallel sequencing on Illumina NextSeq 500. Aneuploidy status was determined with NIPTmer software, which is based on counting pre-defined per-chromosome sets of unique k-mers from raw sequencing data. To estimate fetal fraction (FF) from total cell-free DNA SeqFF was implemented.ResultsNIPTmer software allowed to identify correctly all samples of non-mosaic T21 (15/15), T18 (9/9) and T13 (4/4) cases. However, one mosaic T18 remained undetected. Six false positive results were observed, including three for T18 (specificity 99.3%) and three for T13 (specificity 99.3%). FF < 4% (2.8-3.99%) was estimated in eight samples, including two samples with T13 and T18. Despite low FF, these two samples were determined as aneuploid with NIPTmer software.ConclusionOur NIPT analysis pipeline proved to perform efficiently in detecting common fetal aneuploidies T21, T18 and T13 and is feasible for implementation into clinical service in Estonia.


2018 ◽  
Vol 23 (20) ◽  
Author(s):  
Holly B Bratcher ◽  
Carina Brehony ◽  
Sigrid Heuberger ◽  
Despo Pieridou-Bagatzouni ◽  
Pavla Křížová ◽  
...  

Invasive meningococcal disease surveillance in Europe combines isolate characterisation and epidemiological data to support public health intervention. A representative European Meningococcal Strain Collection (EMSC) of IMD isolates was obtained, and whole genome sequenced to characterise 799 EMSC isolates from the epidemiological year July 2011–June 2012. To establish a genome library (GL), the isolate information was deposited in the pubMLST.org/neisseria database. Genomes were curated and annotated at 2,429 meningococcal loci, including those defining clonal complex, capsule, antigens, and antimicrobial resistance. Most genomes contained genes encoding B (n = 525; 65.7%) or C (n = 163; 20.4%) capsules; isolates were genetically highly diverse, with >20 genomic lineages, five of which comprising 60.7% (n = 485) of isolates. There were >350 antigenic fine-types: 307 were present once, the most frequent (P1.7-2,4:F5-1) comprised 8% (n = 64) of isolates. Each genome was characterised for Bexsero Antigen Sequence Typing (BAST): 25.5% (n = 204) of isolates contained alleles encoding the fHbp and/or the PorA VR1 vaccine component, but most genomes (n = 513; 64.2%) did not contain the NadA component. EMSC-GL will support an integrated surveillance of disease-associated genotypes in Europe, enabling the monitoring of hyperinvasive lineages, outbreak identification, and supporting vaccine programme implementation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1665-1665
Author(s):  
Elisabeth Mack ◽  
Danny Langer ◽  
André Marquardt ◽  
Alfred Ultsch ◽  
Michael G Kiehl ◽  
...  

Abstract Background Acute Myeloid Leukemia (AML) is the most common acute leukemia in adults with a poor overall prognosis. Although the disease has been extensively characterized on the molecular level, this knowledge is translating only slowly into the clinic, particularly with regard to novel therapeutic concepts. Presumably, this striking imbalance substantially is due to the long time required to complete genetic analyses so that results are not available when treatment has to be initiated. Specifically, cytogenetic examinations to determine the karyotype of the malignant blasts, which has been the most important parameter for risk stratification for more than thirty years, take up to two weeks. Next generation sequencing (NGS) technology essentially catalyzed efforts to dissect the genomic landscape of AML, leading to the identification of a large variety of AML driver genes and distinct molecular risk groups. However, these emerging molecular classes of AML do not cover all patients, implying that karyotyping is not dispensable for AML diagnostics at this point. Here we present an integrated approach to AML diagnostics that incorporates these complementary genetic examinations - focused mutational screening of AML-related genes and karyotyping - in one NGS assay. Methods We combined targeted resequencing of DNA and RNA using commercially available panels (TruSigth Myeloid, Illumina and FusionPlex Heme, ArcherDx) to detect AML-associated short sequence variants and gene fusions with low coverage whole genome sequencing for copy number variation analysis. Sequencing was performed on an Illumina MiSeq instrument with a read length of 2x150 bp and a coverage of 3.75 M reads for the TruSight Myeloid panel, 2.25 M reads for the FusionPlex panel and 1.5 M reads for the whole genome library. Variants and fusions were called using the manufacturers' analysis software and a previously published algorithm to identify ITDs (ITD-seek, Au et al., 2016). CNV analysis was performed by comparing read distribution in an AML whole genome library to in silico randomly sampled reads from the reference genome using an in house-developed algorithm. Results Initial testing of our approach on leukemia cell lines and peripheral blood leukocytes from healthy donors revealed sensitivities of 2% and 1-25% for the detection of DNA variants and fusions, respectively. Applying stringent filter criteria, we recovered 75% of verified COSMIC variants and 100% of known fusions in undiluted AML samples without false positives. Chromosomal gains and losses were detected with high confidence with a sensitivity of 10%. We were able to reliably distinguish between normal and complex karyotypes, although NGS-karyotyping based on known fusions and CNV-analysis missed some details of highly aberrant karyotypes such as derivative chromosomes and chromosomal translocations that did not involve genes included in the FusionPlex panel. Our preliminary experience on our method in a diagnostic setting confirms high correlation with reference laboratory results and no relevant differences with regard to treatment decisions. Moreover, we find that NGS considerably accelerates genetic diagnostics of AML as the entire workflow from sample to report including three parallel library preparations, sequencing and data analysis can be completed within 5 days. Operational costs amount approximately 1,700 USD (1,500 EUR) per sample with the low throughput equipment used in this work, which is in the range of expenses for currently established AML diagnostics. Conclusions NGS allows for comprehensive translocation and mutation screening, however, some technical and bioinformatics optimization is required to achieve consistently high sensitivity and specificity for all target genes. CNV analysis of low coverage whole genome sequencing data adds valuable information on numerical chromosomal aberrations, thus allowing construction of a virtual karyotype to substitute for difficult and time-consuming cytogenetics. In summary, we present a reliable, fast and cost-effective strategy to combine molecular and cytogenetics for AML diagnostics in a single NGS run in order to pave the way for a more differentiated clinical management of AML patients in the near future. Disclosures Kiehl: Roche: Consultancy, Other: Travel grants, Speakers Bureau.


2015 ◽  
Vol 20 (49) ◽  
Author(s):  
Carina Brehony ◽  
Dorothea M Hill ◽  
Jay Lucidarme ◽  
Ray Borrow ◽  
Martin C Maiden

The lack of an anti-capsular vaccine against serogroup B meningococcal disease has necessitated the exploration of alternative vaccine candidates, mostly proteins exhibiting varying degrees of antigenic variation. Analysis of variants of antigen-encoding genes is facilitated by publicly accessible online sequence repositories, such as the Neisseria PubMLST database and the associated Meningitis Research Foundation Meningococcus Genome Library (MRF-MGL). We investigated six proposed meningococcal vaccine formulations by deducing the prevalence of their components in the isolates represented in these repositories. Despite high diversity, a limited number of antigenic variants of each of the vaccine antigens were prevalent, with strong associations of particular variant combinations with given serogroups and genotypes. In the MRF-MGL and globally, the highest levels of identical sequences were observed with multicomponent/multivariant vaccines. Our analyses further demonstrated that certain combinations of antigen variants were prevalent over periods of decades in widely differing locations, indicating that vaccine formulations containing a judicious choice of antigen variants have potential for long-term protection across geographic regions. The data further indicated that formulations with multiple variants would be especially relevant at times of low disease incidence, as relative diversity was higher. Continued surveillance is required to monitor the changing prevalence of these vaccine antigens.


2015 ◽  
Author(s):  
Michael J.T. Stubbington ◽  
Tapio Lönnberg ◽  
Valentina Proserpio ◽  
Simon Clare ◽  
Anneliese O. Speak ◽  
...  

The heterodimeric T cell receptor (TCR) comprises two protein chains that pair to determine the antigen specificity of each T lymphocyte. The enormous sequence diversity within TCR repertoires allows specific TCR sequences to be used as lineage markers for T cells that derive from a common progenitor. We have developed a computational method, called TraCeR, to reconstruct full­length, paired TCR sequences from T lymphocyte single­cell RNA­seq by combining existing assembly and alignment programs with a “synthetic genome” library comprising all possible TCR sequences. We validate this method with PCR to quantify its accuracy and sensitivity, and compare to other TCR sequencing methods. Our inferred TCR sequences reveal clonal relationships between T cells, which we put into the context of each cell’s functional state from the complete transcriptional landscape quantified from the remaining RNA­seq data. This provides a powerful tool to link T cell specificity with functional response in a variety of normal and pathological conditions. We demonstrate this by determining the distribution of members of expanded T cell clonotypes in response to Salmonella​ infection in the mouse. We show that members of the same clonotype span early activated CD4+ T cells, as well as mature effector and memory cells.


2013 ◽  
Vol 779-780 ◽  
pp. 235-238
Author(s):  
Li Wang ◽  
Jia Yuan Li ◽  
Qi Xu ◽  
Qing Ping Zhong ◽  
Zhen Lin Liao

Genome library of toxic Alexandium minutum were constructed. A 1014bp DNA reconstruction fragment was obtained and PCR method testified that this fragment had strong amplification signal in toxic strains while no signal in non-toxic strains. The external sequence of the DNA fragment was analyzed by inverse PCR method, and a 240bp nucleotide sequence which translated into proteins aminophenol was Methionine Aminopeptidase (MAP). The sequence of aminophenol was BLAST in NCBI, and found that it had 97% similarity with Alexandium fundyense. This sequence was exact uniform with the reported sequence in the coding region, but there were three bases mutated in non-coding region behind stop codon. Probably, in the course of growth metabolism of Alexandium minutum, MAP executed different physiological functions and controlled the production of the toxin. In the meantime, map gene induced encoding products of the related poisonous gene, and enabled it has active expressions to starting toxin synthesis.


Sign in / Sign up

Export Citation Format

Share Document