Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons

Nature ◽  
1989 ◽  
Vol 339 (6224) ◽  
pp. 468-470 ◽  
Author(s):  
Christopher A. Ross ◽  
Jacopo Meldolesi ◽  
Teresa A. Milner ◽  
Tomohide Satoh ◽  
Surachai Supattapone ◽  
...  
1994 ◽  
Vol 91 (16) ◽  
pp. 7510-7514 ◽  
Author(s):  
M. Terasaki ◽  
N. T. Slater ◽  
A. Fein ◽  
A. Schmidek ◽  
T. S. Reese

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Matias Wagner ◽  
Daniel P. S. Osborn ◽  
Ina Gehweiler ◽  
Maike Nagel ◽  
Ulrike Ulmer ◽  
...  

Abstract Alterations of Ca2+ homeostasis have been implicated in a wide range of neurodegenerative diseases. Ca2+ efflux from the endoplasmic reticulum into the cytoplasm is controlled by binding of inositol 1,4,5-trisphosphate to its receptor. Activated inositol 1,4,5-trisphosphate receptors are then rapidly degraded by the endoplasmic reticulum-associated degradation pathway. Mutations in genes encoding the neuronal isoform of the inositol 1,4,5-trisphosphate receptor (ITPR1) and genes involved in inositol 1,4,5-trisphosphate receptor degradation (ERLIN1, ERLIN2) are known to cause hereditary spastic paraplegia (HSP) and cerebellar ataxia. We provide evidence that mutations in the ubiquitin E3 ligase gene RNF170, which targets inositol 1,4,5-trisphosphate receptors for degradation, are the likely cause of autosomal recessive HSP in four unrelated families and functionally evaluate the consequences of mutations in patient fibroblasts, mutant SH-SY5Y cells and by gene knockdown in zebrafish. Our findings highlight inositol 1,4,5-trisphosphate signaling as a candidate key pathway for hereditary spastic paraplegias and cerebellar ataxias and thus prioritize this pathway for therapeutic interventions.


2006 ◽  
Vol 34 (3) ◽  
pp. 351-355 ◽  
Author(s):  
G.A. Rutter

A number of studies in recent years have demonstrated that the ER (endoplasmic reticulum) makes intimate contacts with mitochondria, the latter organelles existing both as individual organelles and occasionally as a more extensive interconnected network. Demonstrations that mitochondria take up Ca2+ more avidly upon its mobilization from the ER than when delivered to permeabilized cells as a buffered solution also indicate that a shielded conduit for Ca2+ may exist between the two organelle types, perhaps comprising the inositol 1,4,5-trisphosphate receptor and mitochondrial outer membrane proteins including the VDAC (voltage-dependent anion channel). Although the existence of such intracellular ER–mitochondria ‘synapses’, or of an ER–mitochondria Ca2+ ‘translocon’, is an exciting idea, more definitive experiments are needed to test this possibility.


2015 ◽  
Vol 290 (34) ◽  
pp. 20880-20892 ◽  
Author(s):  
Hongwei Ma ◽  
Michael R. Butler ◽  
Arjun Thapa ◽  
Josh Belcher ◽  
Fan Yang ◽  
...  

Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency.


Cell Calcium ◽  
1999 ◽  
Vol 26 (1-2) ◽  
pp. 9-13 ◽  
Author(s):  
P.De Smet ◽  
J.B. Parys ◽  
G. Callewaert ◽  
A.F. Weidema ◽  
E. Hill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document