Regulation of serotonin-2C receptor G-protein coupling by RNA editing

Nature ◽  
1997 ◽  
Vol 387 (6630) ◽  
pp. 303-308 ◽  
Author(s):  
Colleen M. Burns ◽  
Hsin Chu ◽  
Susan M. Rueter ◽  
Linda K. Hutchinson ◽  
Hervé Canton ◽  
...  
2000 ◽  
Vol 74 (3) ◽  
pp. 1290-1300 ◽  
Author(s):  
Qingde Wang ◽  
Peter J. O'Brien ◽  
Chun-Xia Chen ◽  
Dan-Sung C. Cho ◽  
John M. Murray ◽  
...  

2021 ◽  
Vol 7 (14) ◽  
pp. eabf1268
Author(s):  
Changxiu Qu ◽  
Chunyou Mao ◽  
Peng Xiao ◽  
Qingya Shen ◽  
Ya-Ni Zhong ◽  
...  

Selective modulation of the heterotrimeric G protein α S subunit–coupled prostaglandin E2 (PGE2) receptor EP2 subtype is a promising therapeutic strategy for osteoporosis, ocular hypertension, neurodegenerative diseases, and cardiovascular disorders. Here, we report the cryo–electron microscopy structure of the EP2-Gs complex with its endogenous agonist PGE2 and two synthesized agonists, taprenepag and evatanepag (CP-533536). These structures revealed distinct features of EP2 within the EP receptor family in terms of its unconventional receptor activation and G protein coupling mechanisms, including activation in the absence of a typical W6.48 “toggle switch” and coupling to Gs via helix 8. Moreover, inspection of the agonist-bound EP2 structures uncovered key motifs governing ligand selectivity. Our study provides important knowledge for agonist recognition and activation mechanisms of EP2 and will facilitate the rational design of drugs targeting the PGE2 signaling system.


2005 ◽  
Vol 315 (3) ◽  
pp. 1354-1361 ◽  
Author(s):  
Masaaki Sato ◽  
Dana S. Hutchinson ◽  
Tore Bengtsson ◽  
Anders Floren ◽  
Ülo Langel ◽  
...  

2005 ◽  
Vol 24 (23) ◽  
pp. 4106-4114 ◽  
Author(s):  
Peter Hein ◽  
Monika Frank ◽  
Carsten Hoffmann ◽  
Martin J Lohse ◽  
Moritz Bünemann

Life Sciences ◽  
1999 ◽  
Vol 64 (6-7) ◽  
pp. 563
Author(s):  
W.S. Messer ◽  
X.-P. Huang ◽  
P.I. Nagy ◽  
F.E. Williams ◽  
S.M. Peseckis

Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1666-1674 ◽  
Author(s):  
Catherine B. Kessler ◽  
Anne M. Delany

Osteonectin, or secreted protein acidic and rich in cysteine, is one of the most abundant noncollagen matrix components in bone. This matricellular protein regulates extracellular matrix assembly and maturation in addition to modulating cell behavior. Mice lacking osteonectin develop severe low-turnover osteopenia, and in vitro studies of osteonectin-null osteoblastic cells showed that osteonectin supports osteoblast formation, maturation, and survival. The present studies demonstrate that osteonectin-null osteoblastic cells have increased expression of Notch 1, a well-documented regulator of cell fate in multiple systems. Furthermore, osteonectin-null cells are more plastic and less committed to osteoblastic differentiation, able to pursue adipogenic differentiation given the appropriate signals. Notch 1 transcripts are down-regulated by inducers of cAMP in both wild-type and osteonectin-null osteoblasts, suggesting that the mutant osteoblasts may have a defect in generation of cAMP in response to stimuli. Indeed, many bone anabolic agents signal through increased cAMP. Wild-type and osteonectin-null osteoblasts generated comparable amounts of cAMP in response to forskolin, a direct stimulator of adenylyl cyclase. However, the ability of osteonectin-null osteoblasts to generate cAMP in response to cholera toxin, a direct stimulator of Gs, was attenuated. These data imply that osteonectin-null osteoblasts have decreased coupling of Gs to adenylyl cyclase. Because osteonectin promotes G protein coupling to an effector, our studies support the concept that low-turnover osteopenia can result from reducing G protein coupled receptor activity.


Sign in / Sign up

Export Citation Format

Share Document