scholarly journals Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy

2016 ◽  
Vol 37 (2) ◽  
pp. 235-245 ◽  
Author(s):  
Hong Liu ◽  
Liu-bao Gu ◽  
Yue Tu ◽  
Hao Hu ◽  
Yan-ru Huang ◽  
...  
2019 ◽  
Vol 317 (1) ◽  
pp. F1-F11 ◽  
Author(s):  
Wilfred Lieberthal ◽  
Meiyi Tang ◽  
Mersema Abate ◽  
Mark Lusco ◽  
Jerrold S. Levine

We have reported that preconditioning renal tubular cells (RTCs) with A-769662 [a pharmacological activator of AMP-activated protein kinase (AMPK)] reduces apoptosis of RTCs induced by subsequent stress and ameliorates the severity of ischemic acute kidney injury (AKI) in mice. In the present study, we examined the role of the phosphoinositide 3-kinase (PI3K)/Akt pathway in mediating these effects. Using shRNA, we developed knockdown (KD) RTCs to confirm that any novel effects of A-769662 are mediated specifically by AMPK. We reduced expression of the total β-domain of AMPK in KD RTCs by >80%. Control RTCs were transfected with “scrambled” shRNA. Preconditioning control RTCs with A-769662 increased both the phosphorylation (activity) of AMPK and survival of these cells when exposed to subsequent stress, but neither effect was observed in KD cells. These data demonstrate that activation of AMPK by A-769662 is profoundly impaired in KD cells. A-769662 activated PI3K and Akt in control but not KD RTCs. These data provide novel evidence that activation of the PI3K/Akt pathway by A-769662 is mediated specifically through activation of AMPK and not by a nonspecific mechanism. We also demonstrate that, in control RTCs, Akt plays a role in mediating the antiapoptotic effects of A-769662. In addition, we provide evidence that AMPK ameliorates the severity of ischemic AKI in mice and that this effect is also partially mediated by Akt. Finally, we provide evidence that AMPK activates PI3K by inhibiting mechanistic target of rapamycin complex 1 and preventing mechanistic target of rapamycin complex 1-mediated inhibition of insulin receptor substrate-1-associated activation of PI3K.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fanghua Li ◽  
Anbang Sun ◽  
Genyang Cheng ◽  
Dong Liu ◽  
Jing Xiao ◽  
...  

AICAR (Acadesine/AICA riboside) as an activator of AMPK, can protect renal tubular cells from cisplatin induced apoptosis. But in our experiment, the dorsomorphin (compound C, an inhibitor of AMPK) also significantly reduced cisplatin induced renal tubular cells apoptosis. Accordingly, we tested whether compound C can protect cisplatin-induced nephrotoxicity and the specific mechanism. Here, we treated Boston University mouse proximal tubular cells (BUMPT-306) with cisplatin and/or different dosages of AICAR (Acadesine/AICA riboside) or compound C to confirm the effect of AICAR and compound C in vitro. The AMPK-siRNA treated cells to evaluate whether the protective effect of compound C was through inhibiting AMPK. Male C57BL/6 mice were used to verify the effect of compound C in vivo. Both compound C and AICAR can reduce renal tubular cells apoptosis in dose-dependent manners, and compound C decreased serum creatinine and renal tubular injury induced by cisplatin. Mechanistically, compound C inhibited P53, CHOP and p-IREα during cisplatin treatment. Our results demonstrated that compound C inhibited AMPK, but the renal protective effects of compound C were not through AMPK. Instead, compound C protected cisplatin nephrotoxicity by inhibiting P53 and endoplasmic reticulum (ER) stress. Therefore, compound C may protect against cisplatin-induced nephrotoxicity through pleiotropic effects.


2018 ◽  
Vol 315 (6) ◽  
pp. F1720-F1731 ◽  
Author(s):  
Lung-Chih Li ◽  
Jenq-Lin Yang ◽  
Wen-Chin Lee ◽  
Jin-Bor Chen ◽  
Chien-Te Lee ◽  
...  

High levels of serum free fatty acids (FFAs) and proteinuria have been implicated in the pathogenesis of obesity-related nephropathy. CD36, a class B scavenger receptor, is highly expressed in the renal proximal tubules and mediates FFA uptake. It is not clear whether FFA- and proteinuria-mediated CD36 activation coordinates NLRP3 inflammasomes to induce renal tubular injury and inflammation. In this study, we investigated the roles of CD36 and NLRP3 inflammasomes in FFA-induced renal injury in high-fat diet (HFD)-induced obesity. HFD-fed C57BL/6 mice and palmitate-treated HK2 renal tubular cells were used as in vivo and in vitro models. Immunohistochemical staining showed that CD36, IL-1β, and IL-18 levels increased progressively in the kidneys of HFD-fed mice. Sulfo- N-succinimidyl oleate (SSO), a CD36 inhibitor, attenuated the HFD-induced upregulation of NLRP3, IL-1β, and IL-18 and suppressed the colocalization of NLRP3 and ASC in renal tubular cells. In vitro, SSO abolished the palmitate-induced activation of IL-1β, IL-18, and caspase-1 in HK2 proximal tubular cells. Furthermore, treatment with SSO and the knockdown of caspase-1 expression by siRNA both inhibited palmitate-induced cell death and apoptosis in HK2 cells. Collectively, palmitate causes renal tubular inflammation, cell death, and apoptosis via the CD36/NLRP3/caspase-1 axis, which may explain, at least in part, the mechanism underlying FFA-related renal tubular injury. The blockade of CD36-induced cellular processes is therefore a promising strategy for treating obesity-related nephropathy.


2005 ◽  
Vol 20 (10) ◽  
pp. 2071-2079 ◽  
Author(s):  
Binytha Wegner ◽  
Patrick Baer ◽  
Stefan Gauer ◽  
Gerhard Oremek ◽  
Ingeborg A. Hauser ◽  
...  

2015 ◽  
Vol 34 (11) ◽  
pp. 1096-1105
Author(s):  
H-H Cheng ◽  
C-T Chou ◽  
T-K Sun ◽  
W-Z Liang ◽  
J-S Cheng ◽  
...  

Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca2+) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca2+]i and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca2+]i rises in a concentration-dependent manner. This Ca2+ signal was reduced partly when extracellular Ca2+ was removed. The Ca2+ signal was inhibited by a Ca2+ channel blocker nifedipine but not by store-operated Ca2+ channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca2+-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pumps, partly inhibited naproxen-induced Ca2+ signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca2+]i rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca2+ with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca2+]i rises by inducing Ca2+ release from multiple stores that included the endoplasmic reticulum and Ca2+ entry via nifedipine-sensitive Ca2+ channels. Naproxen induced cell death that involved apoptosis.


2013 ◽  
Vol 305 (6) ◽  
pp. F881-F890 ◽  
Author(s):  
Hasiyeti Maimaitiyiming ◽  
Yanzhang Li ◽  
Wenpeng Cui ◽  
Xiaopeng Tong ◽  
Heather Norman ◽  
...  

Cisplatin is widely used to treat malignancies. However, its major limitation is the development of dose-dependent nephrotoxicity. The precise mechanisms of cisplatin-induced kidney damage remain unclear, and the renoprotective agents during cisplatin treatment are still lacking. Here, we demonstrated that the expression and activity of cGMP-dependent protein kinase-I (PKG-I) were reduced in cisplatin-treated renal tubular cells in vitro as well as in the kidney tissues from cisplatin-treated mice in vivo. Increasing PKG activity by both pharmacological and genetic approaches attenuated cisplatin-induced kidney cell apoptosis in vitro. This was accompanied by decreased Bax/Bcl2 ratio, caspase 3 activity, and cytochrome c release. Cisplatin-induced mitochondria membrane potential loss in the tubular cells was also prevented by increased PKG activity. All of these data suggest a protective effect of PKG on mitochondria function in renal tubular cells. Importantly, increasing PKG activity pharmacologically or genetically diminished cisplatin-induced tubular damage and preserved renal function during cisplatin treatment in vivo. Mitochondria structural and functional damage in the kidney from cisplatin-treated mice was inhibited by increased PKG activity. In addition, increasing PKG activity enhanced ciaplatin-induced cell death in several cancer cell lines. Taken together, these results suggest that increasing PKG activity may be a novel option for renoprotection during cisplatin-based chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document