scholarly journals Predicting mouse vertebra strength with micro-computed tomography-derived finite element analysis

2015 ◽  
Vol 4 ◽  
Author(s):  
Jeffry S Nyman ◽  
Sasidhar Uppuganti ◽  
Alexander J Makowski ◽  
Barbara J Rowland ◽  
Alyssa R Merkel ◽  
...  
Author(s):  
Naomi Tsafnat

X-ray micro-computed tomography (microCT) allows us to construct three-dimensional images of specimens at the micron scale in a non-destructive manner. The digital nature of the microCT images, which are in voxel form, make them ideal candidates for use in numerical modeling and simulation [1]. Finite element analysis (FEA) is a well-known technique for modeling the structural response of a system to mechanical loading, and is most useful in modeling complex systems which cannot be analyzed analytically. MicroCT datasets can be converted into finite element models, directly incorporating both the geometry of the specimen and information about the different materials in it. This method is known as micro-finite element analysis (microFEA). It is especially useful in the study of materials with complex microstructures.


2021 ◽  
pp. 030157422110296
Author(s):  
Balan K Thushar ◽  
Anirudh K Mathur ◽  
Rajasri Diddige ◽  
Shubhnita Verma ◽  
Prasad Chitra

Objective: This study aimed to analyze the expression of torque between 2 passive self-ligating brackets by simulating different clinical situations using finite element analysis. Material and Methods: Two passive self-ligating brackets, that is, Damon Q (Ormco, Glendora, California) and Smart Clip (3M Unitek, Monrovia, California), were 3D modeled using micro-computed tomography. ANSYS V14.5 software was used for analysis. Archwire and bracket interactions were simulated to measure torque expression by changing wire alloys (stainless steel [SS] and titanium molybdenum [TMA]) and interbracket dimensions. Results: Damon Q brackets generated higher torque values compared to Smart Clip brackets with both SS and TMA wires. Damon Q brackets generated the highest torquing moment of 25.72 Nmm and 7.45 Nmm, while Smart Clip brackets generated 22.25 Nmm and 7.31 Nmm with 0.019 × 0.025″ SS and TMA wires, respectively, at an interbracket distance of 12 mm. Torquing moments decreased for Damon Q and Smart Clip brackets when wire length increased from 12 mm to 16 mm. Conclusion: Damon Q with 0.019 × 0.025″wires exhibited superior torquing characteristics as compared to Smart Clip brackets with similar archwires.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Graeme R. Paul ◽  
Esther Wehrle ◽  
Duncan C. Tourolle ◽  
Gisela A. Kuhn ◽  
Ralph Müller

AbstractMechanical loading allows both investigation into the mechano-regulation of fracture healing as well as interventions to improve fracture-healing outcomes such as delayed healing or non-unions. However, loading is seldom individualised or even targeted to an effective mechanical stimulus level within the bone tissue. In this study, we use micro-finite element analysis to demonstrate the result of using a constant loading assumption for all mouse femurs in a given group. We then contrast this with the application of an adaptive loading approach, denoted real time Finite Element adaptation, in which micro-computed tomography images provide the basis for micro-FE based simulations and the resulting strains are manipulated and targeted to a reference distribution. Using this approach, we demonstrate that individualised femoral loading leads to a better-specified strain distribution and lower variance in tissue mechanical stimulus across all mice, both longitudinally and cross-sectionally, while making sure that no overloading is occurring leading to refracture of the femur bones.


Sign in / Sign up

Export Citation Format

Share Document