Invasive species to surge as ship traffic soars on the high seas

Nature ◽  
2019 ◽  
Vol 567 (7749) ◽  
pp. 437-437
2022 ◽  
Vol 119 (3) ◽  
pp. e2110303118
Author(s):  
Arlie H. McCarthy ◽  
Lloyd S. Peck ◽  
David C. Aldridge

Antarctica, an isolated and long considered pristine wilderness, is becoming increasingly exposed to the negative effects of ship-borne human activity, and especially the introduction of invasive species. Here, we provide a comprehensive quantitative analysis of ship movements into Antarctic waters and a spatially explicit assessment of introduction risk for nonnative marine species in all Antarctic waters. We show that vessels traverse Antarctica’s isolating natural barriers, connecting it directly via an extensive network of ship activity to all global regions, especially South Atlantic and European ports. Ship visits are more than seven times higher to the Antarctic Peninsula (especially east of Anvers Island) and the South Shetland Islands than elsewhere around Antarctica, together accounting for 88% of visits to Southern Ocean ecoregions. Contrary to expectations, we show that while the five recognized “Antarctic Gateway cities” are important last ports of call, especially for research and tourism vessels, an additional 53 ports had vessels directly departing to Antarctica from 2014 to 2018. We identify ports outside Antarctica where biosecurity interventions could be most effectively implemented and the most vulnerable Antarctic locations where monitoring programs for high-risk invaders should be established.


2018 ◽  
Author(s):  
Paul Czechowski ◽  
Erin Grey-Avis ◽  
David M Lodge

The unintentional transport of invasive species through the global shipping network causes substantial losses to social and economic welfare. Addressing this global challenge requires identification of potentially harmful species, and confirmation of their movement along highly frequented shipping routes. As we have previously shown, properly calibrated network models are able to describe passive movement of invasive species around the world. These models can be substantially improved when suitable in-situ biological data is becoming available, now possible by sequencing of environmental DNA (eDNA) from port waters. Here we report a simple and scalable approach to generate metabarcoding data of 18S ribosomal and other eDNA collected in four major US ports. Between Long Beach, Houston, Miami, Baltimore and a multitude of Chinese ports, ships travel both frequently or infrequently while linking to different ecosystems of East Asia. By controlling for ecoregions and ship traffic, we will shortly be able to estimate ship-borne invasive species spread between the two largest global economies, USA and China. With further port DNA sampling and network model refinements, we will also soon be able to provide global assessments of ship-borne invasive species spread to inform management and policy decision makers.


2018 ◽  
Author(s):  
Paul Czechowski ◽  
Erin Grey-Avis ◽  
David M Lodge

The unintentional transport of invasive species through the global shipping network causes substantial losses to social and economic welfare. Addressing this global challenge requires identification of potentially harmful species, and confirmation of their movement along highly frequented shipping routes. As we have previously shown, properly calibrated network models are able to describe passive movement of invasive species around the world. These models can be substantially improved when suitable in-situ biological data is becoming available, now possible by sequencing of environmental DNA (eDNA) from port waters. Here we report a simple and scalable approach to generate metabarcoding data of 18S ribosomal and other eDNA collected in four major US ports. Between Long Beach, Houston, Miami, Baltimore and a multitude of Chinese ports, ships travel both frequently or infrequently while linking to different ecosystems of East Asia. By controlling for ecoregions and ship traffic, we will shortly be able to estimate ship-borne invasive species spread between the two largest global economies, USA and China. With further port DNA sampling and network model refinements, we will also soon be able to provide global assessments of ship-borne invasive species spread to inform management and policy decision makers.


EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 7
Author(s):  
Demian F. Gomez ◽  
Jiri Hulcr ◽  
Daniel Carrillo

Invasive species, those that are nonnative and cause economic damage, are one of the main threats to ecosystems around the world. Ambrosia beetles are some of the most common invasive insects. Currently, severe economic impacts have been increasingly reported for all the invasive shot hole borers in South Africa, California, Israel, and throughout Asia. This 7-page fact sheet written by Demian F. Gomez, Jiri Hulcr, and Daniel Carrillo and published by the School of Forest Resources and Conservation describes shot hole borers and their biology and hosts and lists some strategies for prevention and control of these pests. http://edis.ifas.ufl.edu/fr422


2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.


Sign in / Sign up

Export Citation Format

Share Document