scholarly journals A Light and Electron Microscopic Immunohistochemical Study of Vasoactive Intestinal Polypeptide— And Substance P-Containing Nerve Fibers along the Cerebral Blood Vessels: Comparison with Aminergic and Cholinergic Nerve Fibers

1984 ◽  
Vol 4 (3) ◽  
pp. 407-414 ◽  
Author(s):  
Toru Itakura ◽  
Takashi Okuno ◽  
Kazuo Nakakita ◽  
Ichiro Kamei ◽  
Yutaka Naka ◽  
...  

Vasoactive intestinal polypeptide (VIP)– and substance P–containing nerve fibers were observed in the cerebral blood vessels using an immunohistochemical technique. VIP-containing nerve fibers distributed in a spiral pattern, similar to that of muscle cells. Under electron microscopic observation, VIP-immunoreactive terminals lay close to a muscle cell in the inner layer of the adventitia. In contrast, substance P–containing nerve fibers showed a meshwork pattern in the outer layer of the adventitia. Using both acetylcholinesterase (AChE) staining and VIP immunohistochemistry, AChE-positive and VIP-immunoreactive nerve fibers revealed almost the same distribution in the same specimen. The present data suggest that VIP-containing nerve fibers may play a role in the smooth muscle control of the blood vessels, whereas substance P–containing nerve fibers may not take part in muscle control.

1979 ◽  
Vol 88 (4) ◽  
pp. 557-561 ◽  
Author(s):  
Rolf Uddman ◽  
J. Alumets ◽  
M. Ekelund ◽  
I. Lorén ◽  
O. Densert ◽  
...  

The distribution of adrenergic, cholinergic and peptidergic nerves in the feline eustachian tube was studied using histochemical techniques. Adrenergic, acetylcholinesterase-positive and vasoactive intestinal polypeptide immunoreactive nerves were numerous in the tubal wall. All three types of nerve fibers occurred in the subepithelial layer, around small blood vessels and around the acini of seromucous glands. No nerves displaying substance P or enkephalin immunoreactivity were observed.


1979 ◽  
Vol 27 (9) ◽  
pp. 1283-1284 ◽  
Author(s):  
L I Larsson

Immunocytochemical studies habe shown that many peptides which profoundly affect the endocrine and exocrine functions of the pancreas are localized to neurons. In the cat, such peptidergic nerves appear to innervate ganglia, islets and blood vessels of the pancreas, whereas their contributions to exocrine cells are minor. Our studies suggest that pancreatic ganglia represent one major site of action of the peptides and that, in addition, nerves containing the vasoactive intestinal polypeptide and gastrin/CCK-related peptides profoundly affect pancreatic blood flow and insulin secretion, respectively.


1987 ◽  
Vol 7 (6) ◽  
pp. 720-728 ◽  
Author(s):  
L. Edvinsson ◽  
R. Ekman ◽  
I. Jansen ◽  
J. McCulloch ◽  
R. Uddman

The innervation of cerebral blood vessels by nerve fibers containing calcitonin gene-related peptide (CGRP) and the vasomotor effects of this peptide are described for a number of different mammalian species. CGRP-immunoreactive nerve fibers were present in the adventitia of cerebral arteries in all species examined (guinea pig, cat, rabbit, rat, and mouse). Numerous perikarya containing CGRP immunoreactivity are demonstrable in the trigeminal ganglion of all species. In the cerebral perivascular nerve fibers and in trigeminal perikarya, CGRP is often colocalized with substance P and neurokinin A. Marked interspecies differences exist both in the density of CGRP-immunoreactive nerve fibers and in the cerebrovascular levels measured with radioimmunoassay. The highest concentrations were observed in cerebral vessels from guinea pigs, the lowest concentration in rabbit vessels, and intermediate levels in the feline and human cerebral vasculature. CGRP is a potent dilator of cerebral arteries in all species examined (human pial, feline middle cerebral, rabbit, guinea pig and rat basilar arteries). The concentration of CGRP eliciting half-maximal responses ranged from 0.4 n M (human pial artery) to 3 n M (rat and rabbit basilar arteries). Pretreatment of cerebral arteries with low concentrations of either substance P (0.1 n M) or neurokinin A (3 n M) attenuated slightly the CGRP-induced relaxations of guinea pig basilar arteries. Calcitonin was found to be a very weak dilator of cerebral arteries from human and guinea pig. Thus, cardiovascular nerve fibers containing CGRP appear to be present in all mammalian species (although to varying degrees) and CGRP is invariably a potent dilator of the cerebral arteries for all species.


Sign in / Sign up

Export Citation Format

Share Document