scholarly journals Staurosporine, a Novel Protein Kinase C Inhibitor, Prevents Postischemic Neuronal Damage in the Gerbil and Rat

1990 ◽  
Vol 10 (5) ◽  
pp. 646-653 ◽  
Author(s):  
Hideaki Hara ◽  
Hiroshi Onodera ◽  
Mikio Yoshidomi ◽  
Yuzuru Matsuda ◽  
Kyuya Kogure

The protective effects of protein kinase inhibitors and a calmodulin kinase inhibitor (W-7) against ischemic neuronal damage were examined in the CA1 subfield of the hippocampus. Staurosporine, KT5720, and KT5822 were used as inhibitors of protein kinase C (PKC), cyclic AMP–dependent protein kinase, and cyclic GMP–dependent protein kinase, respectively. All test compounds were injected topically into the CA1 subfield of the hippocampus. In the gerbil ischemia model, staurosporine (0.1–10 ng) administered 30 min before ischemia prevented neuronal damage in a dose-dependent manner. However, KT5720, KT5822, and W-7 were ineffective, even at a dose of 10 ng. In the rat ischemia model, staurosporine (10 ng) also prevented neuronal damage when administered before ischemic insult, although staurosporine administered 10 or 180 min after recirculation was ineffective. These results suggest the involvement of PKC in CA1 pyramidal cell death after ischemia and that the fate of vulnerable CA1 pyramidal cells through PKC-mediated processes could be determined during the early recirculation period.

1996 ◽  
Vol 150 (3) ◽  
pp. 487-495 ◽  
Author(s):  
M Toth ◽  
P Taskinen ◽  
H Ruskoaho

Abstract Relaxin, a reproductive hormone of the insulin-like growth factor family, increases heart rate in experimental animals but its other actions on cardiac function and cellular mechanisms responsible for the positive chronotrophic effect remain unknown. We have studied the actions of human recombinant gene-2 relaxin on the release of atrial natriuretic peptide (ANP) and cardiac function (heart rate, contractile force, perfusion pressure) as well as the underlying signal transduction mechanisms by using the isolated perfused spontaneously beating rat heart preparation. The administration of relaxin into the perfusion fluid at concentrations of 1·5, 3 or 10 nm for 30 min caused a dose-dependent sustained increase in heart rate, while contractile force and perfusion pressure remained unchanged. In addition, infusion of relaxin at a concentration of 10 nm into the perfusate produced a gradual 1·5-fold increase in immunoreactive ANP (IR-ANP) secretion (from 456 ± 76 to 701 ± 124 pg/ml, F=4·5, P<0·001). The ANP secretory and chronotrophic effects of relaxin appear to involve the activation of protein kinase C, since administration of a protein kinase C inhibitor staurosporine at a concentration of 30 nm completely blocked the effect of relaxin (10 nm) on IR-ANP secretion P<0·001) and heart rate (P<0·001). A cAMP-dependent protein kinase inhibitor, H-89 (100 nm), also substantially reduced the ANP secretory effect of relaxin and attenuated the increase in heart rate during the sustained phase of the relaxin infusion (P<0·001). KN-62 (3 μm), a Ca2+/calmodulin-dependent protein kinase inhibitor, decreased the positive chronotrophic effect of relaxin (P<0·001) but did not influence significantly the effect of relaxin on IR-ANP release in isolated perfused rat heart preparation. These results provide the first evidence that relaxin stimulates the secretion of ANP from isolated perfused rat hearts. Our results also suggest that relaxin modulates ANP secretion by activation of protein kinase C and cAMP-dependent protein kinase pathways. Journal of Endocrinology (1996) 150, 487–495


1989 ◽  
Vol 260 (2) ◽  
pp. 471-478 ◽  
Author(s):  
H J Pfannkuche ◽  
V Kaever ◽  
D Gemsa ◽  
K Resch

Resident mouse peritoneal macrophages synthesized and released prostaglandins (PGs) when challenged with 12-O-tetradecanoylphorbol 13-acetate (TPA) or 1,2-dioctanoyl-sn-glycerol (DiC8). Both stimuli were found to activate Ca2+/phospholipid-dependent protein kinase C (PKC). 1-(5-Isoquinolinesulphonyl)-2-methylpiperazine (‘H-7’) and D-sphingosine, known to inhibit PKC by different mechanisms, were able to decrease the PKC activity of macrophages in a dose-dependent manner. Addition of either PKC inhibitor decreased PG synthesis and also the release of arachidonic acid (AA) from phospholipids induced by TPA or DiC8. Simultaneously TPA or DiC8 also decreased incorporation of free AA into membrane phospholipids of macrophages. AA incorporation could be restored, however, by pretreatment with the PKC inhibitors. Our results demonstrate an involvement of PKC in the regulation of PG synthesis in mouse peritoneal macrophages and provide further evidence that reacylation of released fatty acids may be an important regulatory step.


1994 ◽  
Vol 299 (1) ◽  
pp. 309-315 ◽  
Author(s):  
T C Chambers ◽  
J Pohl ◽  
D B Glass ◽  
J F Kuo

Specific sites in the linker region of human P-glycoprotein phosphorylated by protein kinase C (PKC) were identified by means of a synthetic peptide substrate, PG-2, corresponding to residues 656-689 from this region of the molecule. As PG-2 has several sequences of the type recognized by the cyclic AMP-dependent protein kinase (PKA), PG-2 was also tested as a substrate for PKA. PG-2 was phosphorylated by purified PKC in a Ca2+/phospholipid-dependent manner, with a Km of 1.3 microM, and to a maximum stoichiometry of 2.9 +/- 0.1 mol of phosphate/mol of peptide. Sequence analysis of tryptic fragments of PG-2 phosphorylated by PKC identified Ser-661, Ser-667 and Ser-671 as the three sites of phosphorylation. PG-2 was also found to be phosphorylated by purified PKA in a cyclic AMP-dependent manner, with a Km of 21 microM, and to a maximum stoichiometry of 2.6 +/- 0.2 mol of phosphate/mol of peptide. Ser-667, Ser-671 and Ser-683 were phosphorylated by PKA. Truncated peptides of PG-2 were utilized to confirm that Ser-661 was PKC-specific and Ser-683 was PKA-specific. Further studies showed that PG-2 acted as a competitive substrate for the P-glycoprotein kinase present in membranes from multidrug-resistant human KB cells. The membrane kinase phosphorylated PG-2 mainly on Ser-661, Ser-667 and Ser-671. These results show that human P-glycoprotein can be phosphorylated by at least two protein kinases, stimulated by different second-messenger systems, which exhibit both overlapping and unique specificities for phosphorylation of multiple sites in the linker region of the molecule.


Sign in / Sign up

Export Citation Format

Share Document