scholarly journals Cerebral Blood Flow Changes after Brain Injury in Human Amyloid-Beta Knock-in Mice

2013 ◽  
Vol 33 (6) ◽  
pp. 826-833 ◽  
Author(s):  
Eric E Abrahamson ◽  
Lesley M Foley ◽  
Steven T DeKosky ◽  
T Kevin Hitchens ◽  
Chien Ho ◽  
...  

Traumatic brain injury (TBI) is an environmental risk factor for Alzheimer's disease (AD). Increased brain concentrations of amyloid-β (Aβ) peptides and impaired cerebral blood flow (CBF) are shared pathologic features of TBI and AD and promising therapeutic targets. We used arterial spin-labeling magnetic resonance imaging to examine if CBF changes after TBI are influenced by human Aβ and amenable to simvastatin therapy. CBF was measured 3 days and 3 weeks after controlled cortical impact (CCI) injury in transgenic human Aβ-expressing APPNLh/NLh mice compared to murine Aβ-expressing C57Bl/6J wild types. Compared to uninjured littermates, CBF was reduced in the cortex of the injured hemisphere in both Aβ transgenics and wild types; deficits were more pronounced in the transgenic group, which exhibited injury-induced increased concentrations of human Aβ. In the hemisphere contralateral to CCI, CBF levels were stable in Aβ transgenic mice but increased in wild-type mice, both relative to uninjured littermates. Post-injury treatment of Aβ transgenic mice with simvastatin lowered brain Aβ concentrations, attenuated deficits in CBF ipsilateral to injury, restored hyperemia contralateral to injury, and reduced brain tissue loss. Future studies examining long-term effects of simvastatin therapy on CBF and chronic neurodegenerative changes after TBI are warranted.

2020 ◽  
Vol 43 (4) ◽  
pp. E8-16
Author(s):  
Jianbin Ge ◽  
Dandan Chen ◽  
Jingjing Ben ◽  
Xinjian Song ◽  
Linqing Zou ◽  
...  

Purpose: To investigate the effect of melatonin on regeneration of cortical neurons in rats with traumatic brain injury (TBI). Methods: Sprague-Dawley rats (n=36) were randomly divided into sham, TBI+vehicle and TBI+melatonin groups. Cerebral blood flow and cognitive function were observed via laser Doppler flowmetry and by Morris water maze testing, respectively. The serum malondialdehyde (MDA) and superoxide dismutase (SOD) levels were used to assess oxidative stress. Immunofluorescence and terminal deoxynucleotidyl transferase dUTP nick end labelling assay was used to observe the newborn neurons and apoptotic cells. Results: Cerebral blood flow in the TBI+melatonin group was higher than that of the TBI+vehicle group at one, 12, 24 and 48 h post-injury, but the difference was not statistically significant (P>0.05). The cognitive function of the rats was better in the TBI+melatonin group than the TBI+vehicle group (P


2018 ◽  
Vol 35 (2) ◽  
pp. 241-248 ◽  
Author(s):  
Jaclyn A. Stephens ◽  
Peiying Liu ◽  
Hanzhang Lu ◽  
Stacy J. Suskauer

2018 ◽  
Vol 129 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Aditya Vedantam ◽  
Claudia S. Robertson ◽  
Shankar P. Gopinath

OBJECTIVEFew studies have reported on changes in quantitative cerebral blood flow (CBF) after decompressive craniectomy and the impact of these measures on clinical outcome. The aim of the present study was to evaluate global and regional CBF patterns in relation to cerebral hemodynamic parameters in patients after decompressive craniectomy for traumatic brain injury (TBI).METHODSThe authors studied clinical and imaging data of patients who underwent xenon-enhanced CT (XeCT) CBF studies after decompressive craniectomy for evacuation of a mass lesion and/or to relieve intractable intracranial hypertension. Cerebral hemodynamic parameters prior to decompressive craniectomy and at the time of the XeCT CBF study were recorded. Global and regional CBF after decompressive craniectomy was measured using XeCT. Regional cortical CBF was measured under the craniectomy defect as well as for each cerebral hemisphere. Associations between CBF, cerebral hemodynamics, and early clinical outcome were assessed.RESULTSTwenty-seven patients were included in this study. The majority of patients (88.9%) had an initial Glasgow Coma Scale score ≤ 8. The median time between injury and decompressive surgery was 9 hours. Primary decompressive surgery (within 24 hours) was performed in the majority of patients (n = 18, 66.7%). Six patients had died by the time of discharge. XeCT CBF studies were performed a median of 51 hours after decompressive surgery. The mean global CBF after decompressive craniectomy was 49.9 ± 21.3 ml/100 g/min. The mean cortical CBF under the craniectomy defect was 46.0 ± 21.7 ml/100 g/min. Patients who were dead at discharge had significantly lower postcraniectomy CBF under the craniectomy defect (30.1 ± 22.9 vs 50.6 ± 19.6 ml/100 g/min; p = 0.039). These patients also had lower global CBF (36.7 ± 23.4 vs 53.7 ± 19.7 ml/100 g/min; p = 0.09), as well as lower CBF for the ipsilateral (33.3 ± 27.2 vs 51.8 ± 19.7 ml/100 g/min; p = 0.07) and contralateral (36.7 ± 19.2 vs 55.2 ± 21.9 ml/100 g/min; p = 0.08) hemispheres, but these differences were not statistically significant. The patients who died also had significantly lower cerebral perfusion pressure (52 ± 17.4 vs 75.3 ± 10.9 mm Hg; p = 0.001).CONCLUSIONSIn the presence of global hypoperfusion, regional cerebral hypoperfusion under the craniectomy defect is associated with early mortality in patients with TBI. Further study is needed to determine the value of incorporating CBF studies into clinical decision making for severe traumatic brain injury.


2001 ◽  
Vol 93 (2) ◽  
pp. 351-353 ◽  
Author(s):  
Monica S. Vavilala ◽  
Joan S. Roberts ◽  
Anne E. Moore ◽  
David W. Newell ◽  
Arthur M. Lam

2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Marike Zwienenberg ◽  
Kee D Kim ◽  
Kiarash Shahlaie

The management of traumatic brain injury focuses on the prevention of second insults, which most often occur because of a supply/demand mismatch of the cerebral metabolism. The healthy brain has mechanisms of autoregulation to match the cerebral blood flow to the cerebral metabolic demand. After trauma, these mechanisms are disrupted, leaving the patient susceptible to episodes of hypotension, hypoxemia, and elevated intracranial pressure. Understanding the normal and pathologic states of the cerebral blood flow is critical for understanding the treatment choices for a patient with traumatic brain injury. In this chapter, we discuss the underlying physiologic principles that govern our approach to the treatment of traumatic brain injury. This review contains 3 figures, 1 table and 12 references Key Words: cerebral autoregulation, cerebral blood flow, cerebral metabolic rate, intracranial pressure, ischemia, reactivity, vasoconstriction, vasodilation, viscosity


Author(s):  
Arnoley S. Abcejo ◽  
Jeffrey J. Pasternak

Cardiac arrest occurs suddenly, often without premonitory symptoms. Consciousness is lost within seconds to minutes because of insufficient cerebral blood flow in the midst of complete hemodynamic collapse. Anoxic-ischemic brain injury is most commonly caused by cardiac arrest, which is frequently lethal; of the US patients with out-of-hospital cardiac arrest treated by emergency medical services, almost 90% die. Among the patients who survive to hospital admission, inpatient mortality may be decreasing, but a substantial number of those survivors have poor neurologic outcomes from anoxic-ischemic brain injury.


Sign in / Sign up

Export Citation Format

Share Document