scholarly journals Progression of MRI markers in cerebral small vessel disease: Sample size considerations for clinical trials

2015 ◽  
Vol 36 (1) ◽  
pp. 228-240 ◽  
Author(s):  
Philip Benjamin ◽  
Eva Zeestraten ◽  
Christian Lambert ◽  
Irina Chis Ster ◽  
Owen A Williams ◽  
...  

Detecting treatment efficacy using cognitive change in trials of cerebral small vessel disease (SVD) has been challenging, making the use of surrogate markers such as magnetic resonance imaging (MRI) attractive. We determined the sensitivity of MRI to change in SVD and used this information to calculate sample size estimates for a clinical trial. Data from the prospective SCANS (St George’s Cognition and Neuroimaging in Stroke) study of patients with symptomatic lacunar stroke and confluent leukoaraiosis was used ( n = 121). Ninety-nine subjects returned at one or more time points. Multimodal MRI and neuropsychologic testing was performed annually over 3 years. We evaluated the change in brain volume, T2 white matter hyperintensity (WMH) volume, lacunes, and white matter damage on diffusion tensor imaging (DTI). Over 3 years, change was detectable in all MRI markers but not in cognitive measures. WMH volume and DTI parameters were most sensitive to change and therefore had the smallest sample size estimates. MRI markers, particularly WMH volume and DTI parameters, are more sensitive to SVD progression over short time periods than cognition. These markers could significantly reduce the size of trials to screen treatments for efficacy in SVD, although further validation from longitudinal and intervention studies is required.

2021 ◽  
Author(s):  
Marvin Petersen ◽  
Benedikt M. Frey ◽  
Carola Mayer ◽  
Simone Kühn ◽  
Jürgen Gallinat ◽  
...  

Abstract Cerebral small vessel disease (CSVD) is a common cause of morbidity and cognitive decline in the elderly population. However, characterizing the disease pathophysiology and its association with potential clinical sequelae in early stages is less well explored. We applied fixel-based analysis (FBA), a novel framework of investigating microstructural white matter integrity by diffusion-weighted imaging, to data of 921 participants of the Hamburg City Health Study, comprising middle-aged individuals with increased cerebrovascular risk in early stages of CSVD. In individuals in the highest quartile of white matter hyperintensity loads (n=232, median age 63 years; IQR 15.3 years), FBA detected significantly reduced axonal density and increased atrophy of transcallosal fiber tracts, the bilateral superior longitudinal fasciculus, and corticospinal tracts compared to participants in the lowest quartile of white matter hyperintensities (n=228, mean age 55 years; IQR 10 years). Analysis of all participants (N=921) demonstrated a significant association between reduced fiber density and worse executive functions operationalized by the Trail Making Test. Findings were confirmed by complementary analysis of diffusion tensor metrics.


Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 720
Author(s):  
Larisa A. Dobrynina ◽  
Zukhra Sh. Gadzhieva ◽  
Kamila V. Shamtieva ◽  
Elena I. Kremneva ◽  
Bulat M. Akhmetzyanov ◽  
...  

Introduction: Cerebral small vessel disease (CSVD) is the leading cause of vascular and mixed degenerative cognitive impairment (CI). The variability in the rate of progression of CSVD justifies the search for sensitive predictors of CI. Materials: A total of 74 patients (48 women, average age 60.6 ± 6.9 years) with CSVD and CI of varying severity were examined using 3T MRI. The results of diffusion tensor imaging with a region of interest (ROI) analysis were used to construct a predictive model of CI using binary logistic regression, while phase-contrast magnetic resonance imaging and voxel-based morphometry were used to clarify the conditions for the formation of CI predictors. Results: According to the constructed model, the predictors of CI are axial diffusivity (AD) of the posterior frontal periventricular normal-appearing white matter (pvNAWM), right middle cingulum bundle (CB), and mid-posterior corpus callosum (CC). These predictors showed a significant correlation with the volume of white matter hyperintensity; arterial and venous blood flow, pulsatility index, and aqueduct cerebrospinal fluid (CSF) flow; and surface area of the aqueduct, volume of the lateral ventricles and CSF, and gray matter volume. Conclusion: Disturbances in the AD of pvNAWM, CB, and CC, associated with axonal damage, are a predominant factor in the development of CI in CSVD. The relationship between AD predictors and both blood flow and CSF flow indicates a disturbance in their relationship, while their location near the floor of the lateral ventricle and their link with indicators of internal atrophy, CSF volume, and aqueduct CSF flow suggest the importance of transependymal CSF transudation when these regions are damaged.


2019 ◽  
Vol 20 (3) ◽  
pp. 776 ◽  
Author(s):  
Michael Thrippleton ◽  
Gordon Blair ◽  
Maria Valdes-Hernandez ◽  
Andreas Glatz ◽  
Scott Semple ◽  
...  

A protocol for evaluating ultrasmall superparamagnetic particles of iron oxide (USPIO) uptake and elimination in cerebral small vessel disease patients was developed and piloted. B1-insensitive R1 measurement was evaluated in vitro. Twelve participants with history of minor stroke were scanned at 3-T MRI including structural imaging, and R1 and R2* mapping. Participants were scanned (i) before and (ii) after USPIO (ferumoxytol) infusion, and again at (iii) 24–30 h and (iv) one month. Absolute and blood-normalised changes in R1 and R2* were measured in white matter (WM), deep grey matter (GM), white matter hyperintensity (WMH) and stroke lesion regions. R1 measurements were accurate across a wide range of values. R1 (p < 0.05) and R2* (p < 0.01) mapping detected increases in relaxation rate in all tissues immediately post-USPIO and at 24–30 h. R2* returned to baseline at one month. Blood-normalised R1 and R2* changes post-infusion and at 24–30 h were similar, and were greater in GM versus WM (p < 0.001). Narrower distributions were seen with R2* than for R1 mapping. R1 and R2* changes were correlated at 24–30 h (p < 0.01). MRI relaxometry permits quantitative evaluation of USPIO uptake; R2* appears to be more sensitive to USPIO than R1. Our data are explained by intravascular uptake alone, yielding estimates of cerebral blood volume, and did not support parenchymal uptake. Ferumoxytol appears to be eliminated at 1 month. The approach should be valuable in future studies to quantify both blood-pool USPIO and parenchymal uptake associated with inflammatory cells or blood-brain barrier leak.


Stroke ◽  
2016 ◽  
Vol 47 (6) ◽  
pp. 1679-1684 ◽  
Author(s):  
Marco Pasi ◽  
Inge W.M. van Uden ◽  
Anil M. Tuladhar ◽  
Frank-Erik de Leeuw ◽  
Leonardo Pantoni

Stroke ◽  
2019 ◽  
Vol 50 (Suppl_1) ◽  
Author(s):  
Chia-Ling Phuah ◽  
Yasheng Chen ◽  
Ziyang Liu ◽  
Nirupama Yechoor ◽  
Helen Hwang ◽  
...  

2017 ◽  
Vol 131 (12) ◽  
pp. 1361-1373 ◽  
Author(s):  
Iain D. Croall ◽  
Valerie Lohner ◽  
Barry Moynihan ◽  
Usman Khan ◽  
Ahamad Hassan ◽  
...  

Diffusion tensor imaging (DTI) metrics such as fractional anisotropy (FA) and mean diffusivity (MD) have been proposed as clinical trial markers of cerebral small vessel disease (SVD) due to their associations with outcomes such as cognition. However, studies investigating this have been predominantly single-centre. As clinical trials are likely to be multisite, further studies are required to determine whether associations with cognition of similar strengths can be detected in a multicentre setting. One hundred and nine patients (mean age =68 years) with symptomatic lacunar infarction and confluent white matter hyperintensities (WMH) on MRI was recruited across six sites as part of the PRESERVE DTI substudy. After handling missing data, 3T-MRI scanning was available from five sites on five scanner models (Siemens and Philips), alongside neuropsychological and quality of life (QoL) assessments. FA median and MD peak height were extracted from DTI histogram analysis. Multiple linear regressions were performed, including normalized brain volume, WMH lesion load, and n° lacunes as covariates, to investigate the association of FA and MD with cognition and QoL. DTI metrics from all white matter were significantly associated with global cognition (standardized β =0.268), mental flexibility (β =0.306), verbal fluency (β =0.376), and Montreal Cognitive Assessment (MoCA) (β =0.273). The magnitudes of these associations were comparable with those previously reported from single-centre studies found in a systematic literature review. In this multicentre study, we confirmed associations between DTI parameters and cognition, which were similar in strength to those found in previous single-centre studies. The present study supports the use of DTI metrics as biomarkers of disease progression in multicentre studies.


2017 ◽  
Vol 31 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Maria M D’Souza ◽  
SP Gorthi ◽  
Kunal Vadwala ◽  
Richa Trivedi ◽  
C Vijayakumar ◽  
...  

Background Patients with cerebral small vessel disease may suffer from varying levels of cognitive deficit and may progress on to vascular dementia. The extent of involvement, as seen on conventional magnetic resonance (MR) measures, correlates poorly with the level of cognitive decline. The purpose of this study was to investigate the utility of diffusion tensor imaging (DTI) as a marker for white matter damage in small vessel disease and to assess its correlation with cognitive function. Methods Thirty consecutive patients with cerebral small vessel disease underwent conventional MR imaging, DTI, and neuropsychological assessment. Results On tractographic analysis, fractional anisotropy was significantly reduced while mean diffusivity significantly increased in several white matter tracts. The alteration in DTI indices correlated well with cognitive function. No significant correlation was identified between T2 lesion load and cognitive performance. Conclusions Tractographic analysis of white matter integrity is a useful measure of disease severity and correlates well with cognitive function. It may have a significant potential in monitoring disease progression and may serve as a surrogate marker for treatment trials.


2020 ◽  
pp. 0271678X2097251
Author(s):  
Annemarie Brandhofe ◽  
Christoph Stratmann ◽  
Jan-Rüdiger Schüre ◽  
Ulrich Pilatus ◽  
Elke Hattingen ◽  
...  

Previous diffusion tensor imaging (DTI) studies indicate that impaired microstructural integrity of the normal-appearing white matter (NAWM) is related to cognitive impairment in cerebral small vessel disease (SVD). This study aimed to investigate whether quantitative T2 relaxometry is a suitable imaging biomarker for the assessment of tissue changes related to cognitive abnormalities in patients with SVD. 39 patients and 18 age-matched healthy control subjects underwent 3 T magnetic resonance imaging (MRI) with T2-weighted multiple spin echo sequences for T2 relaxometry and DTI sequences, as well as comprehensive cognitive assessment. Averaged quantitative T2, fractional anisotropy (FA) and mean diffusivity (MD) were determined in the NAWM and related to cognitive parameters controlling for age, normalized brain volume, white matter hyperintensity volume and other conventional SVD markers. In SVD patients, quantitative T2 values were significantly increased compared to controls (p = 0.002) and significantly negatively correlated with the global cognitive performance (r= –0.410, p = 0.014) and executive function (r= –0.399, p = 0.016). DTI parameters did not correlate with cognitive function. T2 relaxometry of the NAWM seems to be sensitive to microstructural tissue damage associated with cognitive impairment in SVD and might be a promising imaging biomarker for evaluation of disease progression and possible effects of therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document