Age-Related Changes in Activation of Mitogen-Activated Protein Kinase Cascades by Oxidative Stress

1998 ◽  
Vol 3 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Kathryn Z Guyton ◽  
Myriani Gorospe ◽  
Xiantao Wang ◽  
Yolanda D Mock ◽  
Gertrude C Kokkonen ◽  
...  
1998 ◽  
Vol 3 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Kathryn Z. Guyton ◽  
Myriani Gorospe ◽  
Xiantao Wang ◽  
Yolanda D. Mock ◽  
Gertrude C. Kokkonen ◽  
...  

2004 ◽  
Vol 381 (3) ◽  
pp. 675-683 ◽  
Author(s):  
Janet V. CROSS ◽  
Dennis J. TEMPLETON

Many intracellular signalling events are accompanied by generation of reactive oxygen species in cells. Oxidation of protein thiol groups is an emerging theme in signal-transduction research. We have found that MEKK1 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase kinase 1], an upstream activator of the SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, is directly inhibited by cysteine alkylation using NEM (N-ethylmaleimide). The related kinase, ASK1 (apoptosis signal-regulating kinase 1), was not inhibited, but was instead activated by NEM. Inhibition of MEKK1 requires a single unique cysteine residue (Cys1238) in the ATP-binding domain of MEKK1. Oxidative stress induced by menadione (2-methyl-1,4-naphthoquinone) also inhibited MEKK1, but activated ASK1, in cells. MEKK1 inhibition by menadione also required Cys1238. Oxidant-inhibited MEKK1 was re-activated by dithiothreitol and glutathione, supporting reversible cysteine oxidation as a mechanism. Using various chemical probes, we excluded modification by S-nitrosylation or oxidation of cysteine to sulphenic acid. Oxidant-inhibited MEKK1 migrated normally on non-reducing gels, excluding the possibility of intra- or inter-molecular disulphide bond formation. MEKK1 was inhibited by glutathionylation in vitro, and MEKK1 isolated from menadione-treated cells was shown by MS to be modified by glutathione on Cys1238. Our results support a model whereby the redox environment within the cell selectively regulates stress signalling through MEKK1 versus ASK1, and may thereby participate in the induction of apoptosis by oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document