Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma

Leukemia ◽  
2015 ◽  
Vol 29 (9) ◽  
pp. 1918-1927 ◽  
Author(s):  
S Kikuchi ◽  
R Suzuki ◽  
H Ohguchi ◽  
Y Yoshida ◽  
D Lu ◽  
...  
2014 ◽  
Vol 46 (2) ◽  
pp. 474-486 ◽  
Author(s):  
SHOTA MORIYA ◽  
SEIICHIRO KOMATSU ◽  
KAHO YAMASAKI ◽  
YUSUKE KAWAI ◽  
HIROKO KOKUBA ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2088-2088
Author(s):  
Marcus Gomez ◽  
Vijay G. Ramakrishnan ◽  
Vivek Prasad ◽  
Teresa K. Kimlinger ◽  
Utkarsh Painuly ◽  
...  

Abstract Background: Multiple myeloma (MM) cells evade apoptosis through multiple mechanisms thus enabling it to evade therapy. The Bcl2 family of anti-apoptotic proteins is aberrantly expressed in MM cell lines and patient cells. Yet, pharmacological intervention of this family appears to have significant activity only in molecular subgroups of MM patients. This clearly suggests alternate mechanisms of overcoming apoptotic signals in MM cells in addition to the Bcl2 family, through proteins such as IAPs. We have previously shown that simultaneous inhibition of the three major IAP proteins, namely cIAP1, cIAP2 and XIAP is required to induce pronounced apoptosis in MM cells. However, IAP inhibition results in apoptosis in only some MM cell lines and patient cells. Given that levels of Bcl2 family proteins are unaffected by IAP inhibition, we hypothesized that combined inhibition of the IAP proteins using a SMAC mimetic LCL161 and the Bcl2 family proteins using a pan-Bcl2 inhibitor obatoclax (OBX) will lead to more pronounced and synergistic cell death in a broader subgroup of MM patients. Methods: LCL161 was synthesized by Novartis Inc. (Basel, Switzerland). OBX was purchased from Selleckchem (Houston, USA). Stock solutions were made in DMSO, and subsequently diluted in RPMI-1640 medium for use. MM cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum (20% serum for primary patient cells) supplemented with L-Glutamine, penicillin, and streptomycin. Cytotoxicity was measured using the MTT viability assay and proliferation using thymidine uptake. Apoptosis was measured using flow cytometry upon cell staining with Annexin V-FITC and propidium iodide (PI) for cell lines and patient cells. Immunoblotting was done on cell extracts at various time points following incubation with the drugs in order to study the cell signaling pathways and a Results: LCL161/OBX combination induced synergistic cytotoxicity and anti-proliferative effects on a broad range of human MM cell lines, including drug resistant cell lines like DOX40 and MM1R. Components of the bone marrow microenvironment including bone marrow stromal cells and tumor promoting cytokines (VEGF, IGF and IL6) were unable to protect MM cells from the effects of the drug combination. We saw a time dependent increase in apoptosis, with the combination inducing significantly more apoptosis than either of the single agents alone. Examining the mechanism of action of the drug combination showed clear inhibition of the IAP proteins, activation of caspases 9, 8, 3 and Bid by LCL161 and the combination and up regulation of the pro-apoptotic proteins Bim, Bid, Puma and Noxa and accumulation of LC3-II by OBX and the combination. Using chloroquine along with the OBX, we were able to demonstrate that OBX induced protective autophagy and the addition of LCL161 was able to overcome this protective effect induced after single agent OBX treatment. Since protective autophagy can be induced by the ER stress response, we then examined the expression levels of proteins involved in this pathway. We observed clear induction of ER stress mediated UPR pathway by both the drugs. However, LCL161 and OBX induced different branches of the UPR pathway. OBX activated the ATF6 and pErk/peif2α/ATF4 branches of the UPR, both of which have been implicated in cell survival during ER stress. ATF4 under irrecoverable ER stress can lead to increase in transcription of CHOP and cause apoptosis. We therefore examined levels of CHOP and observed no induction of CHOP post treatment with either of the drugs or the combination. LCL161, however differentially modulated the IRE1 branch of the UPR by down regulating Xbp-1 splicing, which is a pro survival activity of IREI and up regulating pJNK, which indicated a pro-apoptotic activity induced by IRE1 post irrecoverable ER stress This indicated that the ER stress induced apoptosis is triggered by LCL161, which might be important to overcome the ER induced protective effects induced by OBX. Conclusion: Taken together, our studies indicate that LCL161/OBX combination induces synergistic cell death through modulation of apoptosis, authophagy and the ER stress response. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Metis Hasipek ◽  
Dale Grabowski ◽  
Yihong Guan ◽  
Anand D. Tiwari ◽  
Xiaorong Gu ◽  
...  

Multiple myeloma (MM) is a genetically complex hematological disease which is characterized by clonal proliferation of plasma cells in the bone marrow and secretion of monoclonal antibodies and cytokines that can damage bone, bone marrow, and kidney function1. MM cells constantly operate at the limit of their unfolded protein response (UPR) in the face of a secretory load of immunoglobin (Ig) and cytokines that is unparalleled by any other mammalian cell 2,3 and microenvironmental factors that aggravate the degree of physiologic misfolding that occurs during synthesis of secreted proteins. The endoplasmic reticulum (ER) resident protein disulfide isomerases (PDIs) are indispensable for folding of secreted proteins that require intramolecular disulfide-bond arrangement 4 like antibodies and many cytokines. As the main PDI family member, near-complete function of PDIA1 is essential for survival of MM cells while its inhibition should be manageable by the UPR in normal cells creating an opportunity for a large therapeutic window for PDI inhibitors in MM. Previously, we discovered and characterized an irreversible PDI inhibitor (CCF642) that induced cell death in MM cells at doses that did not affect survival of normal bone marrow cells. However, CCF642 has poor solubility and suboptimal selectivity precluding clinical translation. Using structure guided medicinal chemistry, we developed and characterized a highly potent and selective PDI inhibitor, with 10-fold higher potency (Fig 1B) and selectivity. CCF642-34 showed remarkable selectivity against PDIA1 and off-target bindings were eliminated when compared to CCF642 (Fig 1C). In addition to improved selectivity and in vitro PDI inhibition, CCF642-34 demonstrated more than 3-fold higher potency compared to CCF642 against MM1.S and bortezomib resistant MM1.S cells remained sensitive to CCF642-34. Importantly, the novel analogue CCF642-34 has 18-fold better potency in restricting the colony forming abilities of RPMI1640 cells while at no effect on the clonogenic potential of CD34+ cells derived from healthy bone marrow was observed at equivalent doses. CCF642-34 induces ER stress in MM1.S cells as observed in dose and time dependent cleavage of XBP1, IRE1α oligomerization and the profound induction of programmed cell death reflected by PARP and caspase 3 cleavage. To further analyze the modes of action of CCF642-34 and CCF642 we performed RNAseq after treatment of MM1.S cells and found exclusive induction of genes associated with UPR and downstream cell cycle and apoptotic responses for CCF642-34 while additional genes affecting were detected after CCF642 treatment. There were 362 and 568 differentially expressed genes in CCF642-34 and CCF-642 (compared to controls) treated MM1.S cells, respectively. Among these differentially expressed genes 87 down regulated and 142 upregulated were common to both, including downregulation of cell division and mitotic cell cycle process, and upregulation of response to ER stress, unfolded protein response, and apoptotic process gene sets. Results confirm that both CCF642 and CCF642-34 treatment act by inducing lethal ER-stress with greater selectivity for CCF642-34. Accordingly, hierarchical clustering showed distinct gene expression profiles in 642-34 and 642 treated MM1S cells (Fig. 2). CCF642-34 is orally bioavailable and highly efficacious in against established multiple myeloma in a syngeneic 5TGM1-luc/C57BL/KaLwRij model of myeloma. All vehicle control animals were dead by 52 days while 3 out of 6 mice lived beyond 6 months with no sign of relapse. In summary, we synthesized and characterized a novel lead PDIA1 inhibitor based on structure-guided medicinal chemistry that has improved pharmacologic properties to act as novel lead for clinical translation. References: 1. Manier S, Salem KZ, Park J, et al. Genomic complexity of multiple myeloma and its clinical implications. Nat. Rev. Clin. Oncol. 2017; 2. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: Spotlight review. Leukemia. 2009; 3. Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer. 2014; 4. Freedman RB, Hirst TR, Tuite MF. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem. Sci. 1994; Disclosures Valent: Takeda Pharmaceuticals: Other: Teaching, Speakers Bureau; Celgene: Other: Teaching, Speakers Bureau; Amgen Inc.: Other: Teaching, Speakers Bureau.


Oncotarget ◽  
2016 ◽  
Vol 7 (35) ◽  
pp. 56253-56265 ◽  
Author(s):  
Vijay Ramakrishnan ◽  
Marcus Gomez ◽  
Vivek Prasad ◽  
Teresa Kimlinger ◽  
Utkarsh Painuly ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3840-3840
Author(s):  
Francesco Piazza ◽  
Sabrina Manni ◽  
Carmela Gurrieri ◽  
Anna Colpo ◽  
Laura Quotti Tubi ◽  
...  

Abstract Abstract 3840 Poster Board III-776 Hsp90 is an essential chaperone molecule that helps in the maturation and folding of a number of cellular client proteins. Hsp90 function is essential for malignant plasma cell survival, since its inhibition in multiple myeloma (MM) cells results in cell death and activation of apoptosis. Clinical trials using Hsp90 inhibitors are currently ongoing in MM patients. Hsp90 inactivation in MM cells causes perturbation of the endoplasmic reticulum (ER) stress/unfolded protein response (UPR), eventually triggering the apoptotic cascades. Protein kinase CK2 critically regulates the activity of the chaperone complex formed by the Cdc37 and Hsp90 proteins. We already described that CK2 is over-expressed in a fraction of MM patients and is an essential MM pro-survival molecule. We have here investigated its role in the ER stress/UPR pathways and in Hsp90 inhibition-induced apoptosis in MM cells. Down-regulation of the catalytic CK2 alpha subunit with selective chemical inhibitors or RNA interference resulted in significant modifications of the main UPR regulating signaling cascades: 1) a marked reduction of IRE1alpha protein levels; 2) a reduction of BiP/GRP78 and Hsp70 chaperone protein levels; 3) an increase of PERK activity and phospho eIF2alpha levels. When UPR was triggered by thapsigargin in CK2-inactivated cells, we observed that the IRE1alpha-dependent axis of the UPR was greatly impaired, as XBP-1short isoform generation and the levels of some induced chaperones were reduced. Interestingly, thapsigargin was able to induce CK2 kinase activity. Remarkably, treatment of CK2-silenced MM cells with Hsp90 inhibitors geldanamycin or its derivative 17-AAG (17-(demethoxy)-17-allylamino geldanamycin) resulted in 1) an even more pronounced reduction of IRE1 alpha protein levels; 2) a marked inhibition of GA or 17-AAG-triggered BiP/GRP78 protein level raise; 3) a more evident increase of eIF2 alpha phosphorylation. Of note, CK2 plus Hsp90 inhibition was followed by apoptotic cell death to a much greater extent than that obtained with the single inhibition of the two molecules. Noteworthy, these effects were also reproduced upon modelling the MM bone marrow (BM) microenvironment by co-culturing MM cells with BM stromal cells. These data suggest that CK2-mediated signaling regulates the ER stress/UPR pathways and modulates the threshold to apoptosis of ER stressed MM cells. CK2 interacts with Hsp90, since its inhibition synergizes with GA or 17-AAG treatments in terms of induction of apoptosis and shift of the ER stress/UPR pathways towards the terminal phase. These results might be useful to set the groundwork in designing novel combination treatments for MM patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1937-1937
Author(s):  
Alexander Leeksma ◽  
Ingrid A.M. Derks ◽  
Brett Garrick ◽  
Torsten Trowe ◽  
Aldo Jongejan ◽  
...  

Abstract Background Nonsense-mediated decay (NMD) is a cellular quality control system that degrades mRNAs containing premature termination codons (PTCs) as well as ~10% of normal mRNAs (Kurosaki and Maquat, 2016). NMD thus prevents translation of misfolded proteins, and potential activation of the unfolded protein response (UPR). Mutations in splicing factors such as SF3B1, SRSF2, U2AF1 and ZRSR2 found in hematological as well as solid tumors, can lead to generation of aberrant mRNAs that contain PTCs. Aberrant splicing patterns in cancer cells can possibly result in increased pressure on the NMD machinery. CC-115, a potent inhibitor of mTOR kinase (TORK) and of DNA-dependent protein kinase, (DNA-PK; Mortensen et al., 2015; Tsuji et al., 2017), is in clinical development for the treatment of solid and hematologic malignancies (Thijssen et al., 2016). Preclinical data revealed an additional target of CC-115 and its differential effect on NMD. Our hypothesis was that a subset of tumor cells, especially hematologic tumors with high protein production and/or splicing factor mutations, would be susceptible to NMD inhibition by CC-115. Methods In total, 141 cell lines were screened for sensitivity to CC-115-mediated inhibition of proliferation and induction of cell death, in comparison to specific inhibition of TORK (CC-223). Isogenic DNA-PK knockout cell lines HCT116/HCT116 DNA-PK-/- and M059K/M059J DNA-PK-/- were treated with CC-115 and CC-223. Activity on NMD in vivo was tested using HCT-116 xenograft tumors treated with Vehicle or CC-115. Dependence on CC-115 sensitivity was determined using CRISPR/Cas9 technology of apoptosis or UPR genes in various MM cell lines. RNA sequencing was used for identification of potential targets in sensitive and resistant cell lines. Results A subset of cancer cell lines underwent cell death at sub-micromolar concentrations of CC-115 due to inhibition of NMD, but this was independent of mutations in splicing factors such as SF3B1. We next focused on MM cells as these generally produce high levels of (immunoglobulin) proteins and are prone to ER stress, and therefore potentially susceptible to NMD inhibition. Indeed, treatment with CC-115 resulted in activation of the UPR independent of TORK and DNA-PK inhibition, and cell death in 11/12 MM cell lines. Activity of CC-115 correlated strongly with cell death by the known ER-stress inducer, thapsigargin. Cell death by CC-115 occurred by the mitochondrial pathway of apoptosis, as it depended on caspase activity and the presence of Bax-Bak. Analysis of RNA sequencing data is ongoing and has indicated potential targets dictating sensitivity to CC-115-mediated cell death. Conclusions We describe that hematologic tumors with high protein production are specifically sensitive to CC-115, a novel and clinically exploitable inhibitor of NMD. This might lead to application in malignancies that depend on NMD to avoid excessive protein stress, such as multiple myeloma. Disclosures Garrick: Celgene: Employment. Trowe:Celgene: Employment. Kater:Acerta: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche/Genentech: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Eldering:Celgene: Research Funding. Filvaroff:Celgene: Employment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1835-1835 ◽  
Author(s):  
Douglas W Sborov ◽  
Flavia Pichiorri ◽  
Gerard J Nuovo ◽  
Don M Benson ◽  
Yvonne A. Efebera ◽  
...  

Abstract Introduction. The viral oncolytic agent, Reolysin (RV), is a promising novel therapeutic that selectively proliferates in myeloma cells. Our group conducted a phase 1 clinical trial of single agent RV in patients with relapsed and refractory multiple myeloma (MM), and reported that treatment was well tolerated and associated with prolonged disease stability in 25% of patients. Objective responses were not evident, likely because the viral RNA present in the myeloma cells was not producing infectious viral particles. Proteasome inhibitors can lead to myeloma cell death due to increased endoplasmic reticulum (ER) stress and induction of ER-stress related apoptosis (Kelly, Oncogene, 2012). We confirmed this effect preclinically with Carfilzomib (CFZ), and hypothesized that the addition of CFZ to RV would increase viral proliferation and MM cell death sufficiently to obtain objective response in patients with relapsed MM. Methods. For this pilot trial, patients were required to have relapsed myeloma with IMWG-defined measurable disease, ANC ≥ 1,000/uL, platelet count ≥ 50,000/uL, with no creatinine requirements. Cohorts of 6 patients each were planned. Cohort 1 included patients who were CFZ na•ve or had not progressed on a CFZ containing regimen. Intravenous CFZ (20 mg/m2 days 1 and 2 of cycle 1 and 27 mg/m2 thereafter), Reolysin (3 x 1010 TCID50/day), and dexamethasone (20 mg) were administered on days 1, 2, 8, 9, 15, and 16 of a 28-day cycle (Table 1). In situ based methodologies were used to examine the distribution of CD138, CD8, NK cells (CD117 and IL-22), CD 68, PD L1, reoviral capsid protein, and reoviral RNA in bone marrow biopsies performed prior to treatment on days 1 and 9 of cycle 1. Results. Seven patients have been enrolled, four are male, and all are Caucasian. Patients have a median age of 64, and have received on average 2.4 prior lines of therapy and 4.4 prior treatments. All patients were previously exposed to Revlimid and Velcade, and 4 patients were Velcade refractory. One patient was previously treated with CFZ but was deemed to be CFZ sensitive, one patient has dialysis-dependent CKD, and all but one patient had evidence of high-risk cytogenetics on CD138-selected FISH at the time of enrollment. 6/7 patients suffered myalgias and fever after the first two doses of Reolysin, but these symptoms did not recur in any subsequent doses. Treatment has been well tolerated in 5 patients, but 2 patients were removed from study after 2 doses of combination therapy, one for congestive heart failure, and the other for gastrointestinal bleed in the setting of grade 4 thrombocytopenia and an arteriovenous malformation. Due to these 2 DLTs, patient 7 was enrolled at dose level -1 (Carfilzomib 20 mg/m2 and Reolysin 3 x 109 TCID50/day on days 1, 2, 8, 9, 15, and 16 of a 28 day cycle). Within the first 14 days following the initiation of treatment, the mean decrease in platelets for the 7 evaluable patients was 79 (50 - 139), and this included grade 4 (N = 1), and asymptomatic grade 2 (N = 3), and grade 1 (N = 3) events. All patients have had a reduction of the monoclonal protein, 5 patients remain on study, and the longest duration of response is currently 8 cycles. Responses are VGPR (N = 2), PR (N = 3), MR (N = 1), and SD (N = 1) (Figure 1). Intracellular viral replication will be reported at the meeting. Conclusion. This 3-drug regimen is relatively well tolerated in heavily treated patients with relapsed MM. Most patients experience low grade fever and myalgias after the first two doses, and patients have evidence of thrombocytopenia in cycle 1. Combination treatment is associated with reduction of the monoclonal protein in all patients, and 86% (6/7) CFZ-sensitive patients have evidence of objective response. Table 1. Combination treatment dose levels Dose level Dexamethasone (IVP) Carfilzomib (IVPB) Reolysin (IVPB) -1 20 mg/day 20 mg/m2 /day 3 x 109 TCID50/day 1 (starting dose) 20 mg/day C1 Day 1 & 2 - 20 mg/m2 /dayC1 Day 8 & onward - 27 mg/m2 /day 3 x 1010 TCID50/day Figure 1. Waterfall plot representing response of 7 patients with relapsed MM Figure 1. Waterfall plot representing response of 7 patients with relapsed MM Disclosures Off Label Use: Reolysin - oncolytic viral, anti-cancer agent.


Sign in / Sign up

Export Citation Format

Share Document