scholarly journals Uncertainty in predictions of extinction risk/Effects of changes in climate and land use/Climate change and extinction risk (reply)

Nature ◽  
2004 ◽  
Vol 430 (6995) ◽  
pp. 34-34 ◽  
Author(s):  
Chris D. Thomas ◽  
Stephen E. Williams ◽  
Alison Cameron ◽  
Rhys E. Green ◽  
Michel Bakkenes ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7333 ◽  
Author(s):  
José Maria Cardoso da Silva ◽  
Alessandro Rapini ◽  
Luis Cláudio F. Barbosa ◽  
Roger R. Torres

In a world where changes in land cover and climate happen faster than ever due to the expansion of human activities, narrowly distributed species are predicted to be the first to go extinct. Studies projecting species extinction in tropical regions consider either habitat loss or climate change as drivers of biodiversity loss but rarely evaluate them together. Here, the contribution of these two factors to the extinction risk of narrowly distributed species (with ranges smaller than 10,000 km2) of seed plants endemic to a fifth-order watershed in Brazil (microendemics) is assessed. We estimated the Regional Climate Change Index (RCCI) of these watersheds (areas with microendemics) and projected three scenarios of land use up to the year 2100 based on the average annual rates of habitat loss in these watersheds from 2000 to 2014. These scenarios correspond to immediate conservation action (scenario 1), long-term conservation action (scenario 2), and no conservation action (scenario 3). In each scenario, areas with microendemics were classified into four classes: (1) areas with low risk, (2) areas threatened by habitat loss, (3) areas threatened by climate change, and (4) areas threatened by climate change and habitat loss. We found 2,354 microendemic species of seed plants in 776 areas that altogether cover 17.5% of Brazil. Almost 70% (1,597) of these species are projected to be under high extinction risk by the end of the century due to habitat loss, climate change, or both, assuming that these areas will not lose habitat in the future due to land use. However, if habitat loss in these areas continues at the prevailing annual rates, the number of threatened species is projected to increase to more than 85% (2,054). The importance of climate change and habitat loss as drivers of species extinction varies across phytogeographic domains, and this variation requires the adoption of retrospective and prospective conservation strategies that are context specific. We suggest that tropical countries, such as Brazil, should integrate biodiversity conservation and climate change policies (both mitigation and adaptation) to achieve win-win social and environmental gains while halting species extinction.


2013 ◽  
pp. 79-94
Author(s):  
Ngoc Luu Bich

Climate change (CC) and its impacts on the socio-economy and the development of communities has become an issue causing very special concern. The rise in global temperatures, in sea levels, extreme weather phenomena, and salinization have occurred more and more and have directly influenced the livelihoods of rural households in the Red River Delta – one of the two regions projected to suffer strongly from climate change in Vietnam. For farming households in this region, the major and traditional livelihoods are based on main production materials as agricultural land, or aquacultural water surface Changes in the land use of rural households in the Red River Delta during recent times was influenced strongly by the Renovation policy in agriculture as well as the process of industrialization and modernization in the country. Climate change over the past 5 years (2005-2011) has started influencing household land use with the concrete manifestations being the reduction of the area cultivated and the changing of the purpose of land use.


1970 ◽  
Vol 13 (2) ◽  
Author(s):  
Nanang Susanto

Penelitian ini menguji teori Marx yang mengatakan bahwa dalam proses kapitalisasi, petani lahan kecil akan tergusur oleh petani lahan besar. Penelitian ini menggunakan pendekatan kualitatif dengan metode Participatory Action Research (PAR). Menggunakan teknik observasi partisipasi di lapangan, studi ini melakukan wawancara mendalam terhadap petani. Analisis data yang digunakan bersifat induktif. Penelitian ini menghasilkan kesimpulan, bahwa teori Marx tidak terjadi di malar Aman. Adapun penyebab menurunnya pertanian disebabkan menurunnya unsur hara tanah, mahalnya biaya produksi, alih fungsi lahan dan perubahan cuaca. Sedangkan strategi petani lahan kecil untuk mempertahankan kehidupan yaitu melakukan pola tanam tumpang sari, melakukan pekerjaan tambahan, dan mengatur keuangan.This study examines Marx's theory which says that in the process of capitalization, small land farmers will be displaced by large land farmers. This study uses a qualitative approach with the method of Participatory Action Research (PAR). Using the techniques of participatory observation in the field, the study conducted in-depth interviews on farmers. Analysis of the data used is inductive. This study led to the conclusion that Marx's theory does not happen in Aman malar. The cause of the decline of agriculture due to declining soil nutrients, the high cost of production, land use and climate change. While the strategies of small land farmers to sustain life is to do the planting patterns of intercropping, do extra work, and manage finances.


2020 ◽  
pp. 161-165
Author(s):  
Bertram de Crom ◽  
Jasper Scholten ◽  
Janjoris van Diepen

To get more insight in the environmental performance of the Suiker Unie beet sugar, Blonk Consultants performed a comparative Life Cycle Assessment (LCA) study on beet sugar, cane sugar and glucose syrup. The system boundaries of the sugar life cycle are set from cradle to regional storage at the Dutch market. For this study 8 different scenarios were evaluated. The first scenario is the actual sugar production at Suiker Unie. Scenario 2 until 7 are different cane sugar scenarios (different countries of origin, surplus electricity production and pre-harvest burning of leaves are considered). Scenario 8 concerns the glucose syrup scenario. An important factor in the environmental impact of 1kg of sugar is the sugar yield per ha. Total sugar yield per ha differs from 9t/ha sugar for sugarcane to 15t/ha sugar for sugar beet (in 2017). Main conclusion is that the production of beet sugar at Suiker Unie has in general a lower impact on climate change, fine particulate matter, land use and water consumption, compared to cane sugar production (in Brazil and India) and glucose syrup. The impact of cane sugar production on climate change and water consumption is highly dependent on the country of origin, especially when land use change is taken into account. The environmental impact of sugar production is highly dependent on the co-production of bioenergy, both for beet and cane sugar.


Sign in / Sign up

Export Citation Format

Share Document