Assessing Climate Change Impacts on Water, Land-Use and Economic Return in Agriculture

2007 ◽  
Author(s):  
Iddo Kan ◽  
Mickey Rapaport-Rom ◽  
Mordechai Shechter
2015 ◽  
Vol 533 ◽  
pp. 542-556 ◽  
Author(s):  
Björn Guse ◽  
Jochem Kail ◽  
Johannes Radinger ◽  
Maria Schröder ◽  
Jens Kiesel ◽  
...  

2017 ◽  
Vol 28 ◽  
pp. 270-281 ◽  
Author(s):  
Marie-Odile P. Fortier ◽  
Griffin W. Roberts ◽  
Susan M. Stagg-Williams ◽  
Belinda S.M. Sturm

2009 ◽  
Vol 13 (8) ◽  
pp. 1427-1438 ◽  
Author(s):  
M. J. Vepraskas ◽  
J. L. Heitman ◽  
R. E. Austin

Abstract. Hydropedology is well positioned to address contemporary issues resulting from climate change. We propose a six-step process by which digital, field-scale maps will be produced to show where climate change impacts will be greatest for two land uses: a) home sites using septic systems, and b) wetlands. State and federal laws have defined critical water table levels that can be used to determine where septic systems will function well or fail, and where wetlands are likely to occur. Hydrologic models along with historic rainfall and temperature data can be used to compute long records of water table data. However, it is difficult to extrapolate such data across land regions, because too little work has been done to test different ways for doing this reliably. The modeled water table data can be used to define soil drainage classes for individual mapping units, and the drainage classes used to extrapolate the data regionally using existing digital soil survey maps. Estimates of changes in precipitation and temperature can also be input into the models to compute changes to water table levels and drainage classes. To do this effectively, more work needs to be done on developing daily climate files from the monthly climate change predictions. Technology currently exists to use the NRCS Soil Survey Geographic (SSURGO) Database with hydrologic model predictions to develop maps within a GIS that show climate change impacts on septic system performance and wetland boundaries. By using these maps, planners will have the option to scale back development in sensitive areas, or simply monitor the water quality of these areas for pathogenic organisms. The calibrated models and prediction maps should be useful throughout the Coastal Plain region. Similar work for other climate-change and land-use issues can be a valuable contribution from hydropedologists.


2017 ◽  
pp. 49 ◽  
Author(s):  
Philipp Schmidt-Thomé

Climate change adaptation has been growing in importance since the beginning of the 21st century. Historically adaptation, not to climate change but to extreme events, was deeply rooted in many societies and their land-use structures. With industrialization, and especially the increase in globalization since the 1990’s the importance of appropriate adaptation has slowly decreased, leading to increased exposure and risks of human settlements in areas potentially affected by climate change impacts (e.g. sea level rise) and / or extreme events (natural hazards). In order to implement climate change adaptation sustainably feasible solutions should be identified, i.e. viable and acceptable from socio-economic point of views. The identification of such feasible solutions goes beyond pure scientific analysis but incorporates stakeholders, decision-makers and local knowledge.


Author(s):  
Nguyen Kim Loi

With the changes in climatic, biophysical, socio-cultural, economic, and technological components, paradigm shifts in natural resources management are unavoidably and have to be adapted/modified to harmonize with the global changes and the local communities’ needs. This chapter focuses on sustainable land use and watershed management in response to climate change impacts. The first part covers some definitions and background on sustainable land use, watershed management approach, and sustainable watershed management. The second part describes the use of the Geographic Information System (GIS) and Spatial Decision Support System (SDSS) model focusing on the framework for a planning and decision making, computer-based system for supporting spatial decisions. The mathematical programming has been reviewed focusing on optimization algorithms that include optimization modeling and simulation modeling for decision making. Finally, the example of methodology development for sustainable land use and watershed management in response to climate change in Dong Nai watershed, Vietnam is presented.


Author(s):  
Dharumarajan S. ◽  
Veeramani S. ◽  
Kalaiselvi Beeman ◽  
Lalitha M. ◽  
Janani N. ◽  
...  

Land degradation and desertification have been graded as a major environmental and social dispute in most of the emerging countries. Changes in temperature, wind speed, and precipitation patterns will influence plant biomass production, land use, land cover, soil moisture, infiltration rate, runoff and crop management, and ultimately, land degradation. Close relations between climate change and land degradation processes have been perceived in the past decades. Climate change models and land use models should be combined with hydrologic/erosion models to accurately compute or predict climate change impacts on land degradation. This chapter introduces the advancements in modeling of impact of climate changes in land degradation and need for the critical investigation to better understand and forecast the responses of land degradation processes to a changing climate in the future.


Sign in / Sign up

Export Citation Format

Share Document