scholarly journals UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Mirjam Hunziker ◽  
Jonas Barandun ◽  
Elisabeth Petfalski ◽  
Dongyan Tan ◽  
Clémentine Delan-Forino ◽  
...  
2014 ◽  
Vol 207 (4) ◽  
pp. 481-498 ◽  
Author(s):  
Jochen Baßler ◽  
Helge Paternoga ◽  
Iris Holdermann ◽  
Matthias Thoms ◽  
Sander Granneman ◽  
...  

Eukaryotic ribosome biogenesis involves ∼200 assembly factors, but how these contribute to ribosome maturation is poorly understood. Here, we identify a network of factors on the nascent 60S subunit that actively remodels preribosome structure. At its hub is Rsa4, a direct substrate of the force-generating ATPase Rea1. We show that Rsa4 is connected to the central protuberance by binding to Rpl5 and to ribosomal RNA (rRNA) helix 89 of the nascent peptidyl transferase center (PTC) through Nsa2. Importantly, Nsa2 binds to helix 89 before relocation of helix 89 to the PTC. Structure-based mutations of these factors reveal the functional importance of their interactions for ribosome assembly. Thus, Rsa4 is held tightly in the preribosome and can serve as a “distribution box,” transmitting remodeling energy from Rea1 into the developing ribosome. We suggest that a relay-like factor network coupled to a mechano-enzyme is strategically positioned to relocate rRNA elements during ribosome maturation.


2022 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Tom Dielforder ◽  
Christina Maria Braun ◽  
Fabian Hölzgen ◽  
Shuang Li ◽  
Mona Thiele ◽  
...  

The synthesis of ribosomes involves the correct folding of the pre-ribosomal RNA within pre-ribosomal particles. The first ribosomal precursor or small subunit processome assembles stepwise on the nascent transcript of the 35S gene. At the earlier stages, the pre-ribosomal particles undergo structural and compositional changes, resulting in heterogeneous populations of particles with highly flexible regions. Structural probing methods are suitable for resolving these structures and providing evidence about the architecture of ribonucleoprotein complexes. Our approach used MNase tethered to the assembly factors Nan1/Utp17, Utp10, Utp12, and Utp13, which among other factors, initiate the formation of the small subunit processome. Our results provide dynamic information about the folding of the pre-ribosomes by elucidating the relative organization of the 5′ETS and ITS1 regions within the 35S and U3 snoRNA around the C-terminal domains of Nan1/Utp17, Utp10, Utp12, and Utp13.


2019 ◽  
Vol 20 (11) ◽  
pp. 2806 ◽  
Author(s):  
Jesse M. Fox ◽  
Rebekah L. Rashford ◽  
Lasse Lindahl

In eukaryotes three of the four ribosomal RNA (rRNA) molecules are transcribed as a long precursor that is processed into mature rRNAs concurrently with the assembly of ribosomal subunits. However, the relative timing of association of ribosomal proteins with the ribosomal precursor particles and the cleavage of the precursor rRNA into the subunit-specific moieties is not known. To address this question, we searched for ribosomal precursors containing components from both subunits. Particles containing specific ribosomal proteins were targeted by inducing synthesis of epitope-tagged ribosomal proteins followed by pull-down with antibodies targeting the tagged protein. By identifying other ribosomal proteins and internal rRNA transcribed spacers (ITS1 and ITS2) in the immuno-purified ribosomal particles, we showed that eS7/S7 and uL4/L4 bind to nascent ribosomes prior to the separation of 40S and 60S specific segments, while uS4/S9, uL22, and eL13/L13 are bound after, or simultaneously with, the separation. Thus, the incorporation of ribosomal proteins from the two subunits begins as a co-assembly with a single rRNA molecule, but is finished as an assembly onto separate precursors for the two subunits.


2017 ◽  
Vol 24 (9) ◽  
pp. 689-699 ◽  
Author(s):  
Cohue Peña ◽  
Ed Hurt ◽  
Vikram Govind Panse

2021 ◽  
Author(s):  
Haina Huang ◽  
Melissa Parker ◽  
Katrin Karbstein

AbstractRibosome assembly is an intricate process, which in eukaryotes is promoted by a large machinery comprised of over 200 assembly factors (AF) that enable the modification, folding, and processing of the ribosomal RNA (rRNA) and the binding of the 79 ribosomal proteins. While some early assembly steps occur via parallel pathways, the process overall is highly hierarchical, which allows for the integration of maturation steps with quality control processes that ensure only fully and correctly assembled subunits are released into the translating pool. How exactly this hierarchy is established, in particular given that there are many instances of RNA substrate “handover” from one highly related AF to another remains to be determined. Here we have investigated the role of Tsr3, which installs a universally conserved modification in the P-site of the small ribosomal subunit late in assembly. Our data demonstrate that Tsr3 separates the activities of the Rio kinases, Rio2 and Rio1, with whom it shares a binding site. By binding after Rio2 dissociation, Tsr3 prevents rebinding of Rio2, promoting forward assembly. After rRNA modification is complete, Tsr3 dissociates, thereby allowing for recruitment of Rio1. Inactive Tsr3 blocks Rio1, which can be rescued using mutants that bypass the requirement for Rio1 activity. Finally, yeast strains lacking Tsr3 randomize the binding of the two kinases, leading to the release of immature ribosomes into the translating pool. These data demonstrate a role for Tsr3 and its modification activity in establishing a hierarchy for the function of the Rio kinases.


2017 ◽  
Vol 372 (1716) ◽  
pp. 20160184 ◽  
Author(s):  
Gulnara Yusupova ◽  
Marat Yusupov

A high-resolution structure of the eukaryotic ribosome has been determined and has led to increased interest in studying protein biosynthesis and regulation of biosynthesis in cells. The functional complexes of the ribosome crystals obtained from bacteria and yeast have permitted researchers to identify the precise residue positions in different states of ribosome function. This knowledge, together with electron microscopy studies, enhances our understanding of how basic ribosome processes, including mRNA decoding, peptide bond formation, mRNA, and tRNA translocation and cotranslational transport of the nascent peptide, are regulated. In this review, we discuss the crystal structure of the entire 80S ribosome from yeast, which reveals its eukaryotic-specific features, and application of X-ray crystallography of the 80S ribosome for investigation of the binding mode for distinct compounds known to inhibit or modulate the protein-translation function of the ribosome. We also refer to a challenging aspect of the structural study of ribosomes, from higher eukaryotes, where the structures of major distinctive features of higher eukaryote ribosome—the high-eukaryote–specific long ribosomal RNA segments (about 1MDa)—remain unresolved. Presently, the structures of the major part of these high-eukaryotic expansion ribosomal RNA segments still remain unresolved. This article is part of the themed issue ‘Perspectives on the ribosome’.


2017 ◽  
Author(s):  
Zahra Assur Sanghai ◽  
Linamarie Miller ◽  
Kelly R. Molloy ◽  
Jonas Barandun ◽  
Mirjam Hunziker ◽  
...  

Early co-transcriptional events of eukaryotic ribosome assembly result in the formation of the small and large subunit processomes. We have determined cryo-EM reconstructions of the nucleolar large subunit processome in different conformational states at resolutions up to 3.4 Ångstroms. These structures reveal how steric hindrance and molecular mimicry are used to prevent premature folding states and binding of later factors. This is accomplished by the concerted activity of 21 ribosome assembly factors that stabilize and remodel pre-ribosomal RNA and ribosomal proteins. Mutually exclusive conformations of these particles suggest that the formation of the polypeptide exit tunnel is achieved through different folding pathways during subsequent stages of ribosome assembly.


RNA ◽  
2022 ◽  
pp. rna.078994.121
Author(s):  
Haina Huang ◽  
Melissa D Parker ◽  
Katrin Karbstein

Ribosome assembly is an intricate process, which in eukaryotes is promoted by a large machinery comprised of over 200 assembly factors (AF) that enable the modification, folding, and processing of the ribosomal RNA (rRNA) and the binding of the 79 ribosomal proteins. While some early assembly steps occur via parallel pathways, the process overall is highly hierarchical, which allows for the integration of maturation steps with quality control processes that ensure only fully and correctly assembled subunits are released into the translating pool. How exactly this hierarchy is established, in particular given that there are many instances of RNA substrate “handover” from one highly related AF to another remains to be determined. Here we have investigated the role of Tsr3, which installs a universally conserved modification in the P-site of the small ribosomal subunit late in assembly. Our data demonstrate that Tsr3 separates the activities of the Rio kinases, Rio2 and Rio1, with whom it shares a binding site. By binding after Rio2 dissociation, Tsr3 prevents rebinding of Rio2, promoting forward assembly. After rRNA modification is complete, Tsr3 dissociates, thereby allowing for recruitment of Rio1. Inactive Tsr3 blocks Rio1, which can be rescued using mutants that bypass the requirement for Rio1 activity. Finally, yeast strains lacking Tsr3 randomize the binding of the two kinases, leading to the release of immature ribosomes into the translating pool. These data demonstrate a role for Tsr3 and its modification activity in establishing a hierarchy for the function of the Rio kinases.


Sign in / Sign up

Export Citation Format

Share Document