ribosomal precursor
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 3)

H-INDEX

27
(FIVE YEARS 1)

2022 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Tom Dielforder ◽  
Christina Maria Braun ◽  
Fabian Hölzgen ◽  
Shuang Li ◽  
Mona Thiele ◽  
...  

The synthesis of ribosomes involves the correct folding of the pre-ribosomal RNA within pre-ribosomal particles. The first ribosomal precursor or small subunit processome assembles stepwise on the nascent transcript of the 35S gene. At the earlier stages, the pre-ribosomal particles undergo structural and compositional changes, resulting in heterogeneous populations of particles with highly flexible regions. Structural probing methods are suitable for resolving these structures and providing evidence about the architecture of ribonucleoprotein complexes. Our approach used MNase tethered to the assembly factors Nan1/Utp17, Utp10, Utp12, and Utp13, which among other factors, initiate the formation of the small subunit processome. Our results provide dynamic information about the folding of the pre-ribosomes by elucidating the relative organization of the 5′ETS and ITS1 regions within the 35S and U3 snoRNA around the C-terminal domains of Nan1/Utp17, Utp10, Utp12, and Utp13.


2020 ◽  
Author(s):  
Alexander A. Vinogradov ◽  
Morito Shimomura ◽  
Naokazu Kano ◽  
Yuki Goto ◽  
Hiroyasu Onaka ◽  
...  

AbstractEnzymes involved in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis often have relaxed specificity profiles and are able to modify diverse substrates. When several such enzymes act together during precursor peptide maturation, a multitude of products can form, and yet usually, the biosynthesis converges on a single natural product. For the most part, the mechanisms controlling the integrity of RiPP assembly remain elusive. Here, we investigate biosynthesis of lactazole A, a model thiopeptide produced by five promiscuous enzymes from a ribosomal precursor peptide. Using our in vitro thiopeptide production (FIT-Laz) system, we determine the order of biosynthetic events at the individual modification level, and supplement this study with substrate scope analysis for participating enzymes. Combined, our results reveal a dynamic thiopeptide assembly process with multiple points of kinetic control, intertwined enzymatic action, and the overall substrate-level cooperation between the enzymes. This work advances our understanding of RiPP biosynthesis processes and facilitates thiopeptide bioengineering.


2019 ◽  
Vol 20 (11) ◽  
pp. 2806 ◽  
Author(s):  
Jesse M. Fox ◽  
Rebekah L. Rashford ◽  
Lasse Lindahl

In eukaryotes three of the four ribosomal RNA (rRNA) molecules are transcribed as a long precursor that is processed into mature rRNAs concurrently with the assembly of ribosomal subunits. However, the relative timing of association of ribosomal proteins with the ribosomal precursor particles and the cleavage of the precursor rRNA into the subunit-specific moieties is not known. To address this question, we searched for ribosomal precursors containing components from both subunits. Particles containing specific ribosomal proteins were targeted by inducing synthesis of epitope-tagged ribosomal proteins followed by pull-down with antibodies targeting the tagged protein. By identifying other ribosomal proteins and internal rRNA transcribed spacers (ITS1 and ITS2) in the immuno-purified ribosomal particles, we showed that eS7/S7 and uL4/L4 bind to nascent ribosomes prior to the separation of 40S and 60S specific segments, while uS4/S9, uL22, and eL13/L13 are bound after, or simultaneously with, the separation. Thus, the incorporation of ribosomal proteins from the two subunits begins as a co-assembly with a single rRNA molecule, but is finished as an assembly onto separate precursors for the two subunits.


PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e96037 ◽  
Author(s):  
Donatella Ponti ◽  
Gian Carlo Bellenchi ◽  
Rosa Puca ◽  
Daniela Bastianelli ◽  
Marella Maroder ◽  
...  

1996 ◽  
Vol 225 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Rob Willemsen ◽  
Carola Bontekoe ◽  
Filippo Tamanini ◽  
Hans Galjaard ◽  
Andre Hoogeveen ◽  
...  
Keyword(s):  

1991 ◽  
Vol 69 (1) ◽  
pp. 5-22 ◽  
Author(s):  
D. E. Larson ◽  
P. Zahradka ◽  
B. H. Sells

Ribosome biogenesis in eucaryotic cells involves the coordinated synthesis of four rRNA species, transcribed by RNA polymerase I (18S, 28S, 5.8S) and RNA polymerase III (5S), and approximately 80 ribosomal proteins translated from mRNAs synthesized by RNA polymerase II. Assembly of the ribosomal subunits in the nucleolus, the site of 45S rRNA precursor gene transcription, requires the movement of 5S rRNA and ribosomal proteins from the nucleoplasm and cytoplasm, respectively, to this structure. To integrate these events and ensure the balanced production of individual ribosomal components, different strategies have been developed by eucaryotic organisms in response to a variety of physiological changes. This review presents an overview of the mechanisms modulating the production of ribosomal precursor molecules and the rate of ribosome biogenesis in various biological systems.Key words: rRNA, ribosomal proteins, nucleolus, ribosome.


Science ◽  
1988 ◽  
Vol 240 (4860) ◽  
pp. 1751-1758 ◽  
Author(s):  
M Yarus

A specific, reversible binding site for a free amino acid is detectable on the intron of the Tetrahymena self-splicing ribosomal precursor RNA. The site selects arginine among the natural amino acids, and prefers the L- to the D-amino acid. The dissociation constant is in the millimolar range, and amino acid binding is at or in the catalytic rG splicing substrate site. Occupation of the G site by L-arginine therefore inhibits splicing by inhibiting the binding of rG, without inhibition of later reactions in the splicing reaction sequence. Arginine binding specificity seems to be directed at the side chain and the guanidino radical, and the alpha-amino and carboxyl groups are dispensable for binding. The arginine site can be placed within the G site by structural homology, with consequent implications for RNA-amino acid interaction, for the origin of the genetic code, for control of RNA activities, and for further catalytic capabilities for RNA.


1987 ◽  
Vol 253 (4) ◽  
pp. C506-C513 ◽  
Author(s):  
A. J. Ouellette ◽  
R. Moonka ◽  
A. D. Zelenetz ◽  
R. A. Malt

Ribosomal synthesis was studied at the transcriptional and translational levels to investigate the mechanisms of ribosome accretion during compensatory renal hypertrophy. As measured by in vitro transcriptional runoff comparisons 6-48 h after surgery, nuclei from the kidney remaining after contralateral nephrectomy show an increase of up to 150% in the rate of synthesis of ribosomal precursor RNA. The rate of rDNA transcription is 40-50% greater than control values as early as 6 h after nephrectomy; by 48 h, the rate returns to normal. In contrast to the stimulated transcription of rDNA and accretion of rRNA, the steady-state levels and the cytoplasmic distribution of ribosomal protein mRNAs S16 and L10 remain unchanged during induced renal growth. Thus coordinate production of adequate protein for increased assembly of ribosomes during induced renal growth appears to be accomplished by increasingly efficient translation of existing ribosomal protein mRNAs or by post-translational stabilization of ribosomal proteins. The rate of rDNA transcription may be regulated by accelerating the transcription of already functioning genes or, more likely, by recruiting transcription units that are transcriptionally inactive in the normal kidney.


Sign in / Sign up

Export Citation Format

Share Document