scholarly journals Organocatalytic atroposelective synthesis of axially chiral styrenes

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Sheng-Cai Zheng ◽  
San Wu ◽  
Qinghai Zhou ◽  
Lung Wa Chung ◽  
Liu Ye ◽  
...  

Abstract Axially chiral compounds are widespread in biologically active compounds and are useful chiral ligands or organocatalysts in asymmetric catalysis. It is well-known that styrenes are one of the most abundant and principal feedstocks and thus represent excellent prospective building blocks for chemical synthesis. Driven by the development of atroposelective synthesis of axially chiral styrene derivatives, we discovered herein the asymmetric organocatalytic approach via direct Michael addition reaction of substituted diones/ketone esters/malononitrile to alkynals. The axially chiral styrene compounds were produced with good chemical yields, enantioselectivities and almost complete E/Z-selectivities through a secondary amine-catalysed iminium activation strategy under mild conditions. Such structural motifs are important precursors for further transformations into biologically active compounds and synthetic useful intermediates and may have potential applications in asymmetric synthesis as olefin ligands or organocatalysts.

Synlett ◽  
2020 ◽  
Author(s):  
Erica Benedetti ◽  
Laurent Micouin ◽  
Claire Fleurisson

AbstractCyclic cis-1,3-diamines are versatile building blocks frequently found in natural molecules or biologically active compounds. In comparison with widely studied 1,2-diamines, and despite their chemical similarity, 1,3-diamines have been investigated less intensively probably because of a lack of general synthetic procedures giving access to these compounds with good levels of chemo-, regio-, and stereocontrol. In this Account we will give a general overview of the biological interest of cyclic cis-1,3-diamines. We will then describe the synthesis and potential applications of these compounds with a particular focus on the work realized in our laboratory.1 Introduction2 Biological Relevance of the cis-1,3-Diamine Motif3 Classical Synthetic Strategies towards cis-1,3-Diamines4 N–N Bond Cleavage of Bicyclic Hydrazines: A Versatile Method to Access cis-1,3-Diamines4.1 Preparation of Five-Membered Cyclic cis-1,3-Diamino Alcohols4.2 Access to Fluorinated 1,3-cis-Diaminocyclopentanes4.3 Synthesis of cis-1,3-Diaminocyclohexitols4.4 Formation of Cyclic cis-3,5-Diaminopiperidines5 Applications of Cyclic cis-1,3-Diamines5.1 Small-Molecular RNA Binders5.2 Fluorinated 1,3-Diamino Cyclopentanes as NMR Probes6 Concluding Remarks


2021 ◽  
Vol 17 ◽  
pp. 2729-2764
Author(s):  
Alemayehu Gashaw Woldegiorgis ◽  
Xufeng Lin

In recent years, the synthesis of axially chiral compounds has received considerable attention due to their extensive application as biologically active compounds in medicinal chemistry and as chiral ligands in asymmetric catalysis. Chiral phosphoric acids are recognized as efficient organocatalysts for a variety of enantioselective transformations. In this review, we summarize the recent development of chiral phosphoric acid-catalyzed synthesis of a wide range of axially chiral biaryls, heterobiaryls, vinylarenes, N-arylamines, spiranes, and allenes with high efficiency and excellent stereoselectivity.


Author(s):  
Zhixiong Ruan ◽  
Shengsheng Lin ◽  
Xiaomei Cheng ◽  
Hasimujiang Balati ◽  
Zhongnan Xu ◽  
...  

The selenium-substituted heteroarenes are biologically active compounds and useful building blocks. In this sequence, we have developed a metal-and oxidant-free, environmentally friendly protocol for the regioselective selenylation of 2H-indazole derivatives...


2021 ◽  
Vol 18 ◽  
Author(s):  
Christian Schäfer ◽  
Hyejin Cho ◽  
Bernadett Vlocskó ◽  
Guoshu Xie ◽  
Béla Török

: Recent advances in the environmentally benign synthesis of common heterocycles are described. This account features three main parts; the preparation of non-aromatic heterocycles, one-ring aromatic heterocycles and their condensed analogs. Due to the great variety of and high interest in these compounds, this work focuses on providing representative examples of the preparation of the target compounds.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1772
Author(s):  
Ignacio E. Tobal ◽  
Rocío Bautista ◽  
David Diez ◽  
Narciso M. Garrido ◽  
Pilar García-García

In synthetic organic chemistry, there are very useful basic compounds known as building blocks. One of the main reactions wherein they are applied for the synthesis of complex molecules is the Diels–Alder cycloaddition. This reaction is between a diene and a dienophile. Among the most important dienes are the cyclic dienes, as they facilitate the reaction. This review considers the synthesis and reactivity of one of these dienes with special characteristics—it is cyclic and has an electron withdrawing group. This building block has been used for the synthesis of biologically active compounds and is present in natural compounds with interesting properties.


Tetrahedron ◽  
2016 ◽  
Vol 72 (47) ◽  
pp. 7462-7469 ◽  
Author(s):  
Katarzyna Grychowska ◽  
Bartłomiej Kubica ◽  
Marcin Drop ◽  
Evelina Colacino ◽  
Xavier Bantreil ◽  
...  

2020 ◽  
Vol 74 (4) ◽  
pp. 278-284
Author(s):  
Johannes Diesel ◽  
Nicolai Cramer

N-Heterocyclic carbenes (NHCs) are the ligands of choice in a large variety of transformations entailing different transition metals. However, the number and variety of chiral NHCs suitable as stereo-controlling ligands in asymmetric catalysis remains limited. Herein we highlight the introduction of a modular NHC ligand family, consisting of a chiral version of the widely used IPr ligand. These chiral NHC ligands were applied in the nickel-catalyzed enantioselective C–H functionalization of N-heterocycles. Nickel-NHC catalysis unlocked the stereoselective C–H annulation of 2- and 4-pyridones, delivering fused bicyclic compounds found in many biologically active compounds. Applying a bulky, yet flexible ligand scaffold enabled the highly enantioselective C–H functionalization of pyridones under mild conditions. The introduction of a bulky chiral SIPr analogue enabled the nickel-catalyzed enantioselective C–H functionalization of indoles, yielding valuable tetrahydropyridoindoles. Additionally, pyrrolopyridines, pyrrolopyrimidines and pyrroles were efficiently functionalized, delivering chiral annulated azoles.


Sign in / Sign up

Export Citation Format

Share Document