ChemInform Abstract: Recent Advances in Asymmetric Catalysis. Synthetic Applications to Biologically Active Compounds

ChemInform ◽  
2010 ◽  
Vol 32 (42) ◽  
pp. no-no
Author(s):  
Jean Pierre Genet ◽  
Angela Marinetti ◽  
Virginie Ratovelomanana-Vidal
2021 ◽  
Vol 18 ◽  
Author(s):  
Christian Schäfer ◽  
Hyejin Cho ◽  
Bernadett Vlocskó ◽  
Guoshu Xie ◽  
Béla Török

: Recent advances in the environmentally benign synthesis of common heterocycles are described. This account features three main parts; the preparation of non-aromatic heterocycles, one-ring aromatic heterocycles and their condensed analogs. Due to the great variety of and high interest in these compounds, this work focuses on providing representative examples of the preparation of the target compounds.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Sheng-Cai Zheng ◽  
San Wu ◽  
Qinghai Zhou ◽  
Lung Wa Chung ◽  
Liu Ye ◽  
...  

Abstract Axially chiral compounds are widespread in biologically active compounds and are useful chiral ligands or organocatalysts in asymmetric catalysis. It is well-known that styrenes are one of the most abundant and principal feedstocks and thus represent excellent prospective building blocks for chemical synthesis. Driven by the development of atroposelective synthesis of axially chiral styrene derivatives, we discovered herein the asymmetric organocatalytic approach via direct Michael addition reaction of substituted diones/ketone esters/malononitrile to alkynals. The axially chiral styrene compounds were produced with good chemical yields, enantioselectivities and almost complete E/Z-selectivities through a secondary amine-catalysed iminium activation strategy under mild conditions. Such structural motifs are important precursors for further transformations into biologically active compounds and synthetic useful intermediates and may have potential applications in asymmetric synthesis as olefin ligands or organocatalysts.


Compounds ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 3-24
Author(s):  
Njomza Ajvazi ◽  
Stojan Stavber

The iodination of organic compounds is of great importance in synthetic organic chemistry. It opens comprehensive approaches for the synthesis of various biologically active compounds. The recent advances in iodination of organic compounds using elemental iodine or iodides, covering the last thirteen years, are the objective of the present review.


2020 ◽  
Vol 18 (25) ◽  
pp. 4692-4708 ◽  
Author(s):  
Jasneet Kaur ◽  
Banni Preet Kaur ◽  
Swapandeep Singh Chimni

3-Substituted-3-aminooxindoles are versatile scaffolds and these motifs constitute the core structure of number of natural products and biologically active compounds.


2020 ◽  
Vol 74 (4) ◽  
pp. 278-284
Author(s):  
Johannes Diesel ◽  
Nicolai Cramer

N-Heterocyclic carbenes (NHCs) are the ligands of choice in a large variety of transformations entailing different transition metals. However, the number and variety of chiral NHCs suitable as stereo-controlling ligands in asymmetric catalysis remains limited. Herein we highlight the introduction of a modular NHC ligand family, consisting of a chiral version of the widely used IPr ligand. These chiral NHC ligands were applied in the nickel-catalyzed enantioselective C–H functionalization of N-heterocycles. Nickel-NHC catalysis unlocked the stereoselective C–H annulation of 2- and 4-pyridones, delivering fused bicyclic compounds found in many biologically active compounds. Applying a bulky, yet flexible ligand scaffold enabled the highly enantioselective C–H functionalization of pyridones under mild conditions. The introduction of a bulky chiral SIPr analogue enabled the nickel-catalyzed enantioselective C–H functionalization of indoles, yielding valuable tetrahydropyridoindoles. Additionally, pyrrolopyridines, pyrrolopyrimidines and pyrroles were efficiently functionalized, delivering chiral annulated azoles.


Synthesis ◽  
2021 ◽  
Author(s):  
Scott E. Denmark ◽  
Zhong-Lin Tao

AbstractEnantioselective diamination of alkenes represents one of the most straightforward methods to access enantioenriched, vicinal diamines, which are not only frequently encountered in biologically active compounds, but also have broad applications in asymmetric synthesis. Although the analogous dihydroxylation of olefins is well-established, the development of enantioselective olefin diamination lags far behind. Nevertheless, several successful methods have been developed that operate by different reaction mechanisms, including a cycloaddition pathway, a two-electron redox pathway, and a radical pathway. This short review summarizes recent advances and identifies limitations, with the aim of inspiring further developments in this area.1 Introduction2 Cycloaddition Pathway3 Two-Electron Redox Pathway3.1 Pd(0)/Pd(II) Diamination3.2 Pd(II)/Pd(IV) Diamination3.3 I(I)/I(III) Diamination3.4 Se(II)/Se(IV) Diamination4 One-Electron Radical Pathway4.1 Cu-Catalyzed Diamination4.2 Fe-Catalyzed Diamination5 Summary and Outlook


Author(s):  
Luciana Cicco ◽  
Giuseppe Dilauro ◽  
Filippo Maria Perna ◽  
Paola Vitale ◽  
Vito Capriati

This review highlights recent advances in metal- and biocatalyzed transformations, in the synthesis of APIs and other biologically active compounds, when employing deep eutectic solvents and water as environmentally responsible solvents.


Sign in / Sign up

Export Citation Format

Share Document