Temporal lobe resection—does the prospect of seizure freedom outweigh the cognitive risks?

2007 ◽  
Vol 4 (2) ◽  
pp. 66-67 ◽  
Author(s):  
Christoph Helmstaedter
Author(s):  
Cuiping Xu ◽  
Xiaohua Zhang ◽  
Xiaoming Yan ◽  
Kai Ma ◽  
Xueyuan Wang ◽  
...  

Abstract Purpose Seizure originates from different pathological substrate; however, the same pathologies may have distinct mechanisms underlying seizure generation. We aimed to improve the understanding of such mechanisms in patients with temporal lobe epilepsy (TLE) by investigating the stereoelectroencephalography (SEEG) ictal onset patterns (IOPs). Methods We analyzed data from a cohort of 19 consecutive patients explored by SEEG and had 1–3-year seizure-freedom following temporal lobe resection. Results Six IOPs were identified. They were low voltage fast activity (LVFA) (36.5%), rhythmic spikes or spike-waves at low frequency and with high amplitude (34.1%), runs of spikes (10.6%), rhythmic sharp waves (8.2%), low frequency high amplitude repetitive spiking (LFRS) (7.1%), and delta activity (3.5%). All six patterns were found in patients with mesial temporal onset and only two patterns were found in patients with temporal neocortical onset. The most prevalent patterns for patients with mesial temporal onset were rhythmic spikes or spike-waves, followed by LVFA with a mean discharge rate 74 Hz. For patients with temporal neocortical onset, the most prevalent IOP pattern was LVFA with a mean discharge rate 35 Hz, followed by runs of spikes. Compared with Lateral TLE (LTLE), the duration between the onset of the IOPs to the onset of the symptom was longer for patients with MTLE (Mesial TLE) (MTLE:55.7 ± 50.6 s vs LTLE:19.5 ± 16.4 s). Conclusion Multiple IOPs underlie seizure generation in patients with TLE. However, the mesial and lateral temporal lobes share distinct IOPs.


2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Juan G. Ochoa ◽  
Walter G. Rusyniak

Objective. Review presurgical use of ictal HFO mapping to detect ictal activation areas with dual seizure focus in both the temporal and extratemporal cortex.Methods. Review of consecutive patients admitted to the University of South Alabama Epilepsy Monitoring Unit (SouthCEP) between January 2014 and October 2015, with suspected temporal lobe epilepsy and intracranial electrode recording. Ictal HFO localization was displayed in 3D reconstructed brain images using the patient’s own coregistered magnetic resonance imaging (MRI) and computed tomography (CT) with the implanted electrodes.Results. Four of fifteen patients showed evidence of extratemporal involvement at the onset of the clinical seizures. Ictal HFO mapping involving both frontal and temporal lobe changed the surgical resection areas in three patients where the initial surgical plan included only the temporal lobe. Resection of the ictal HFO at the onset of the seizure and the initial propagation region was associated with seizure freedom in all patients; follow-up period ranged from 12 to 25 months.Significance. Extratemporal ictal involvement may not have clinical manifestations and may account for surgical failure in temporal lobe epilepsy. Ictal HFO mapping is useful to define the ictal cortical network and may help detect an extratemporal focus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kajol Marathe ◽  
Ali Alim-Marvasti ◽  
Karan Dahele ◽  
Fenglai Xiao ◽  
Sarah Buck ◽  
...  

Objectives: One-third of individuals with focal epilepsy do not achieve seizure freedom despite best medical therapy. Mesial temporal lobe epilepsy (MTLE) is the most common form of drug resistant focal epilepsy. Surgery may lead to long-term seizure remission if the epileptogenic zone can be defined and safely removed or disconnected. We compare published outcomes following open surgical techniques, radiosurgery (SRS), laser interstitial thermal therapy (LITT) and radiofrequency ablation (RF-TC).Methods: PRISMA systematic review was performed through structured searches of PubMed, Embase and Cochrane databases. Inclusion criteria encompassed studies of MTLE reporting seizure-free outcomes in ≥10 patients with ≥12 months follow-up. Due to variability in open surgical approaches, only comparative studies were included to minimize the risk of bias. Random effects meta-analysis was performed to calculate effects sizes and a pooled estimate of the probability of seizure freedom per person-year. A mixed effects linear regression model was performed to compare effect sizes between interventions.Results: From 1,801 screened articles, 41 articles were included in the quantitative analysis. Open surgery included anterior temporal lobe resection as well as transcortical and trans-sylvian selective amygdalohippocampectomy. The pooled seizure-free rate per person-year was 0.72 (95% CI 0.66–0.79) with trans-sylvian selective amygdalohippocampectomy, 0.59 (95% CI 0.53–0.65) with LITT, 0.70 (95% CI 0.64–0.77) with anterior temporal lobe resection, 0.60 (95% CI 0.49–0.73) with transcortical selective amygdalohippocampectomy, 0.38 (95% CI 0.14–1.00) with RF-TC and 0.50 (95% CI 0.34–0.73) with SRS. Follow up duration and study sizes were limited with LITT and RF-TC. A mixed-effects linear regression model suggests significant differences between interventions, with LITT, ATLR and SAH demonstrating the largest effects estimates and RF-TC the lowest.Conclusions: Overall, novel “minimally invasive” approaches are still comparatively less efficacious than open surgery. LITT shows promising seizure effectiveness, however follow-up durations are shorter for minimally invasive approaches so the durability of the outcomes cannot yet be assessed. Secondary outcome measures such as Neurological complications, neuropsychological outcome and interventional morbidity are poorly reported but are important considerations when deciding on first-line treatments.


2019 ◽  
Author(s):  
Nishant Sinha ◽  
Yujiang Wang ◽  
Nádia Moreira da Silva ◽  
Anna Miserocchi ◽  
Andrew W. McEvoy ◽  
...  

AbstractObjectiveWe assessed pre-operative structural brain networks and clinical characteristics of patients with drug resistant temporal lobe epilepsy (TLE) to identify correlates of post-surgical seizure outcome at 1 year and seizure relapses up to 5 years.MethodsWe retrospectively examined data from 51 TLE patients who underwent anterior temporal lobe resection (ATLR) and 29 healthy controls. For each patient, using the pre-operative structural, diffusion, and post-operative structural MRI, we generated two networks: ‘pre-surgery’ network and ‘surgically-spared’ network. The pre-surgery network is the whole-brain network before surgery and the surgically-spared network is a subnetwork of the pre-surgery network which is expected to remain unaffected by surgery and hence present post-operatively. Standardising these networks with respect to controls, we determined the number of abnormal nodes before surgery and expected to remain after surgery. We incorporated these 2 abnormality measures and 13 commonly acquired clinical data from each patient in a robust machine learning framework to estimate patient-specific chances of seizures persisting after surgery.ResultsPatients with more abnormal nodes had lower chance of seizure freedom at 1 year and even if seizure free at 1 year, were more likely to relapse within five years. In the surgically-spared networks of poor outcome patients, the number of abnormal nodes was greater and their locations more widespread than in good outcome patients. We achieved 0.84 ± 0.06 AUC and 0.89 ± 0.09 specificity in detecting unsuccessful seizure outcomes at 1-year. Moreover, the model-predicted likelihood of seizure relapse was significantly correlated with the grade of surgical outcome at year-one and associated with relapses up-to five years post-surgery.ConclusionNode abnormality offers a personalised non-invasive marker, that can be combined with clinical data, to better estimate the chances of seizure freedom at 1 year, and subsequent relapse up to 5 years after ATLR.


2020 ◽  
Vol 133 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Anthony T. Lee ◽  
John F. Burke ◽  
Pranathi Chunduru ◽  
Annette M. Molinaro ◽  
Robert Knowlton ◽  
...  

OBJECTIVERecent trials for temporal lobe epilepsy (TLE) highlight the challenges of investigating surgical outcomes using randomized controlled trials (RCTs). Although several reviews have examined seizure-freedom outcomes from existing data, there is a need for an overall seizure-freedom rate estimated from level I data as investigators consider other methods besides RCTs to study outcomes related to new surgical interventions.METHODSThe authors performed a systematic review and meta-analysis of the 3 RCTs of TLE in adults and report an overall surgical seizure-freedom rate (Engel class I) composed of level I data. An overall seizure-freedom rate was also collected from level II data (prospective cohort studies) for validation. Eligible studies were identified by filtering a published Cochrane meta-analysis of epilepsy surgery for RCTs and prospective studies, and supplemented by searching indexed terms in MEDLINE (January 1, 2012–April 1, 2018). Retrospective studies were excluded to minimize heterogeneity in patient selection and reporting bias. Data extraction was independently reverified and pooled using a fixed-effects model. The primary outcome was overall seizure freedom following surgery. The historical benchmark was applied in a noninferiority study design to compare its power to a single-study cohort.RESULTSThe overall rate of seizure freedom from level I data was 72.4% (55/76 patients, 3 RCTs), which was nearly identical to the overall seizure-freedom rate of 71.7% (1325/1849 patients, 18 studies) from prospective cohorts (z = 0.134, p = 0.89; z-test). Seizure-freedom rates from level I and II studies were consistent over the years of publication (R2< 0.01, p = 0.73). Surgery resulted in markedly improved seizure-free outcomes compared to medical management (RR 10.82, 95% CI 3.93–29.84, p < 0.01; 2 RCTs). Noninferiority study designs in which the historical benchmark was used had significantly higher power at all difference margins compared to using a single cohort alone (p < 0.001, Bonferroni’s multiple comparison test).CONCLUSIONSThe overall rate of seizure freedom for temporal lobe surgery is approximately 70% for medically refractory epilepsy. The small sample size of the RCT cohort underscores the need to move beyond standard RCTs for epilepsy surgery. This historical seizure-freedom rate may serve as a useful benchmark to guide future study designs for new surgical treatments for refractory TLE.


Epilepsia ◽  
2016 ◽  
Vol 57 (11) ◽  
pp. 1789-1797 ◽  
Author(s):  
Thomas Sauvigny ◽  
Katja Brückner ◽  
Lasse Dührsen ◽  
Oliver Heese ◽  
Manfred Westphal ◽  
...  

2011 ◽  
Vol 26 (8) ◽  
pp. 739-745 ◽  
Author(s):  
R. M. Busch ◽  
M. F. Dulay ◽  
K. H. Kim ◽  
J. S. Chapin ◽  
L. Jehi ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Chifaou Abdallah ◽  
Hélène Brissart ◽  
Sophie Colnat-Coulbois ◽  
Ludovic Pierson ◽  
Olivier Aron ◽  
...  

OBJECTIVEIn drug-resistant temporal lobe epilepsy (TLE) patients, the authors evaluated early and late outcomes for decline in visual object naming after dominant temporal lobe resection (TLR) according to the resection status of the basal temporal language area (BTLA) identified by cortical stimulation during stereoelectroencephalography (SEEG).METHODSTwenty patients who underwent SEEG for drug-resistant TLE met the inclusion criteria. During language mapping, a site was considered positive when stimulation of two contiguous contacts elicited at least one naming impairment during two remote sessions. After TLR ipsilateral to their BTLA, patients were classified as BTLA+ when at least one positive language site was resected and as BTLA− when all positive language sites were preserved. Outcomes in naming and verbal fluency tests were assessed using pre- and postoperative (means of 7 and 25 months after surgery) scores at the group level and reliable change indices (RCIs) for clinically meaningful changes at the individual level.RESULTSBTLA+ patients (n = 7) had significantly worse naming scores than BTLA− patients (n = 13) within 1 year after surgery but not at the long-term evaluation. No difference in verbal fluency tests was observed. When RCIs were used, 5 of 18 patients (28%) had naming decline within 1 year postoperatively (corresponding to 57% of BTLA+ and 9% of BTLA− patients). A significant correlation was found between BTLA resection and naming decline.CONCLUSIONSBTLA resection is associated with a specific and early naming decline. Even if this decline is transient, naming scores in BTLA+ patients tend to remain lower compared to their baseline. SEEG mapping helps to predict postoperative language outcome after dominant TLR.


Sign in / Sign up

Export Citation Format

Share Document