scholarly journals A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL)

2011 ◽  
Vol 43 (7) ◽  
pp. 673-678 ◽  
Author(s):  
Konstantinos J Mavrakis ◽  
Joni Van Der Meulen ◽  
Andrew L Wolfe ◽  
Xiaoping Liu ◽  
Evelien Mets ◽  
...  
2011 ◽  
Vol 43 (8) ◽  
pp. 815-815 ◽  
Author(s):  
Konstantinos J Mavrakis ◽  
Joni Van Der Meulen ◽  
Andrew L Wolfe ◽  
Xiaoping Liu ◽  
Evelien Mets ◽  
...  

Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2180-2186 ◽  
Author(s):  
JM Cayuela ◽  
A Madani ◽  
L Sanhes ◽  
MH Stern ◽  
F Sigaux

No constant genetic alteration has yet been unravelled in T-cell acute lymphoblastic leukemia (T-ALL), and, to date, the most frequent alteration, the SIL-TAL1 deletion, is found in approximately 20% of cases. Recently, two genes have been identified, the multiple tumor- suppressor gene 1 (MTS1) and multiple tumor-suppressor gene 2 (MTS2), whose products inhibit cell cycle progression. A characterization of the MTS locus organization allowed to determine the incidence of MTS1 and MTS2 inactivation in T-ALL. MTS1 and MTS2 configurations were determined by Southern blotting using 8 probes in 59 patients with T- ALL (40 children and 19 adults). Biallelic MTS1 inactivation by deletions and/or rearrangements was observed in 45 cases (76%). Monoallelic alterations were found in 6 cases (10%). The second MTS1 allele was studied in the 4 cases with available material. A point mutation was found in 2 cases. The lack of MTS1 mRNA expression was observed by Northern blot analysis in a third case. A normal single- strand conformation polymorphism pattern of MTS1 exons 1alpha and 2 was found and MTS1 RNA was detected in the fourth case, but a rearrangement occurring 5′ to MTS1 exon 1 alpha deleting MTS1 exon 1Beta was documented. One case presented a complex rearrangement. Germline configuration for MTS1 and MTS2 was found in only 7 cases. The localization of the 17 breakpoints occurring in the MTS locus were determined. Ten of them (59%) are clustered in a 6-kb region located 5 kb downstream to the newly identified MTS1 exon 1Beta. No rearrangement disrupting MTS2 was detected and more rearrangements spared MTS2 than MTS1 (P<.01). MTS1 but not MTS2 RNA was detected by Northern blotting in the human thymus. These data strongly suggest that MTS1 is the functional target of rearrangements in T-ALL. MTS1 inactivation, observed in at least 80% of T-ALL, is the most consistent genetic defect found in this disease to date.


1990 ◽  
Vol 10 (10) ◽  
pp. 5502-5509
Author(s):  
J Cheng ◽  
M Haas

Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells.


1990 ◽  
Vol 10 (10) ◽  
pp. 5502-5509 ◽  
Author(s):  
J Cheng ◽  
M Haas

Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells.


Blood ◽  
1995 ◽  
Vol 86 (10) ◽  
pp. 3869-3875 ◽  
Author(s):  
H Cave ◽  
B Gerard ◽  
E Martin ◽  
C Guidal ◽  
I Devaux ◽  
...  

Abnormalities of the short arm of chromosome 12 are relatively common in hematologic malignancies and deletions of the region. 12p12–13 are found in approximately 5% of the patients with acute lymphoblastic leukemia (ALL). As a potent inhibitor of cyclin-dependent kinases, p27KIP1 prevents the progression of the cell cycle and the gene encoding p27KIP1 represents a potential tumor-suppressor gene. Its recent assignment to the chromosomal region (12p12.3) prompted us to study the p27KIP1 gene in a series of 61 children with ALL. Microsatellite polymorphic markers flanking the p27KIP1 gene were analyzed to detect losses of heterozygosity (LOH). Eleven patients displayed LOH for at least one of the markers. The deleted are encompassed the p27KIP1 gene locus in 10 cases, but inactivation of the remaining allele by deletion, translocation, or mutation was never observed. In addition, in 1 patient, the p27KIP1 gene was situated outside of the region of LOH. Thus, p27KIP1 does not seem to be the target gene of 12p12–13 alterations. However, this study indicates that 12p12–13 alterations at the molecular level, which are present in about 27% of the children with B-lineage ALL, are much more common than had previously been reported by usual chromosome analysis. Moreover, LOH mapping allowed us to better define the location of a putative tumor- suppressor gene implicated in these malignancies and should therefore help in identifying this gene.


2019 ◽  
Vol 33 (2) ◽  
pp. 319-319
Author(s):  
Maria Antonella Laginestra ◽  
Luciano Cascione ◽  
Giovanna Motta ◽  
Fabio Fuligni ◽  
Claudio Agostinelli ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Sign in / Sign up

Export Citation Format

Share Document