scholarly journals Stem cells: disease models that show and tell

2015 ◽  
Vol 12 (2) ◽  
pp. 111-114 ◽  
Author(s):  
Vivien Marx
Keyword(s):  
2009 ◽  
Vol 1176 (1) ◽  
pp. 191-196 ◽  
Author(s):  
Claudia Lengerke ◽  
George Q. Daley

2019 ◽  
Vol 10 (03) ◽  
pp. 135-149
Author(s):  
Hideo Hori ◽  
Masanori Shinzato ◽  
Yoshiyuki Hiki ◽  
Shigeru Nakai ◽  
Gen Niimi ◽  
...  

2016 ◽  
Vol 4 (5) ◽  
pp. 768-784 ◽  
Author(s):  
Stephanie Knowlton ◽  
Yongku Cho ◽  
Xue-Jun Li ◽  
Ali Khademhosseini ◽  
Savas Tasoglu

Three-dimensional neural tissue engineering has significantly advanced the development of neural disease models and replacement tissues for patients by leveraging the unique capabilities of stem cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Rickie Patani

Resolving the mechanisms underlying human neuronal diversification remains a major challenge in developmental and applied neurobiology. Motor neurons (MNs) represent a diverse pool of neuronal subtypes exhibiting differential vulnerability in different human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). The ability to predictably manipulate MN subtype lineage restriction from human pluripotent stem cells (PSCs) will form the essential basis to establishing accurate, clinically relevantin vitrodisease models. I first overview motor neuron developmental biology to provide some context for reviewing recent studies interrogating pathways that influence the generation of MN diversity. I conclude that motor neurogenesis from PSCs provides a powerful reductionist model system to gain insight into the developmental logic of MN subtype diversification and serves more broadly as a leading exemplar of potential strategies to resolve the molecular basis of neuronal subclass differentiation within the nervous system. These studies will in turn permit greater mechanistic understanding of differential MN subtype vulnerability usingin vitrohuman disease models.


Sign in / Sign up

Export Citation Format

Share Document