scholarly journals In vivo (R)-[11C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis

2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Thalia F van der Doef ◽  
Lot D de Witte ◽  
Arjen L Sutterland ◽  
Ellen Jobse ◽  
Maqsood Yaqub ◽  
...  

2009 ◽  
Vol 30 (1) ◽  
pp. 230-241 ◽  
Author(s):  
Abraham Martín ◽  
Raphaël Boisgard ◽  
Benoit Thézé ◽  
Nadja Van Camp ◽  
Bertrand Kuhnast ◽  
...  

Focal cerebral ischemia leads to an inflammatory reaction involving an overexpression of the peripheral benzodiazepine receptor (PBR)/18-kDa translocator protein (TSPO) in the cerebral monocytic lineage (microglia and monocyte) and in astrocytes. Imaging of PBR/TSPO by positron emission tomography (PET) using radiolabeled ligands can document inflammatory processes induced by cerebral ischemia. We performed in vivo PET imaging with [18F]DPA-714 to determine the time course of PBR/TSPO expression over several days after induction of cerebral ischemia in rats. In vivo PET imaging showed significant increase in DPA ( N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide) uptake on the injured side compared with that in the contralateral area on days 7, 11, 15, and 21 after ischemia; the maximal binding value was reached 11 days after ischemia. In vitro autoradiography confirmed these in vivo results. In vivo and in vitro [18F]DPA-714 binding was displaced from the lesion by PK11195 and DPA-714. Immunohistochemistry showed increased PBR/TSPO expression, peaking at day 11 in cells expressing microglia/macrophage antigens in the ischemic area. At later times, a centripetal migration of astrocytes toward the lesion was observed, promoting the formation of an astrocytic scar. These results show that [18F]DPA-714 provides accurate quantitative information of the time course of PBR/TSPO expression in experimental stroke.



2020 ◽  
Author(s):  
Svetlana Bezukladova ◽  
Jouni Tuisku ◽  
Markus Matilainen ◽  
Anna Vuorimaa ◽  
Marjo Nylund ◽  
...  

Objective: To evaluate in vivo the co-occurrence of microglial activation and microstructural white matter damage in multiple sclerosis (MS) brain, and to examine their association with clinical disability. Methods: 18-kDa translocator protein (TSPO) brain PET imaging was performed for evaluation of microglial activation by using the radioligand [11C](R)-PK11195. TSPO-binding was evaluated as the distribution volume ratio (DVR) from dynamic PET images. Diffusion tensor imaging (DTI) and conventional MRI were performed at the same time. Mean fractional anisotropy (FA) and mean (MD), axial (AD) and radial (RD) diffusivities were calculated within the whole normal appearing white matter (NAWM) and segmented NAWM regions appearing normal in conventional MRI. 55 MS patients and 15 healthy controls were examined. Results: Microstructural damage was observed in the NAWM of MS brain. DTI parameters of MS patients were significantly altered in the NAWM, when compared to an age- and sex-matched healthy control group: mean FA was decreased, and MD, AD and RD were increased. These structural abnormalities correlated with increased TSPO binding in the whole NAWM and in the temporal NAWM (p<0.05 for all correlations; p<0.01 for RD in the temporal NAWM). Both compromised WM integrity and increased microglial activation in the NAWM correlated significantly with higher clinical disability measured with expanded disability status scale (EDSS). Conclusions: Widespread structural disruption in the NAWM is linked to neuroinflammation, and both phenomena associate with clinical disability. Multimodal PET and DTI imaging allows in vivo evaluation of widespread MS pathology not visible using conventional MRI.



2020 ◽  
Vol 7 (3) ◽  
pp. e691 ◽  
Author(s):  
Svetlana Bezukladova ◽  
Jouni Tuisku ◽  
Markus Matilainen ◽  
Anna Vuorimaa ◽  
Marjo Nylund ◽  
...  

ObjectiveTo evaluate in vivo the co-occurrence of microglial activation and microstructural white matter (WM) damage in the MS brain and to examine their association with clinical disability.Methods18-kDa translocator protein (TSPO) brain PET imaging was performed for evaluation of microglial activation by using the radioligand [11C](R)-PK11195. TSPO binding was evaluated as the distribution volume ratio (DVR) from dynamic PET images. Diffusion tensor imaging (DTI) and conventional MRI (cMRI) were performed at the same time. Mean fractional anisotropy (FA) and mean (MD), axial, and radial (RD) diffusivities were calculated within the whole normal-appearing WM (NAWM) and segmented NAWM regions appearing normal in cMRI. Fifty-five patients with MS and 15 healthy controls (HCs) were examined.ResultsMicrostructural damage was observed in the NAWM of the MS brain. DTI parameters of patients with MS were significantly altered in the NAWM compared with an age- and sex-matched HC group: mean FA was decreased, and MD and RD were increased. These structural abnormalities correlated with increased TSPO binding in the whole NAWM and in the temporal NAWM (p < 0.05 for all correlations; p < 0.01 for RD in the temporal NAWM). Both compromised WM integrity and increased microglial activation in the NAWM correlated significantly with higher clinical disability measured with the Expanded Disability Status Scale score.ConclusionsWidespread structural disruption in the NAWM is linked to neuroinflammation, and both phenomena associate with clinical disability. Multimodal PET and DTI allow in vivo evaluation of widespread MS pathology not visible using cMRI.



2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Bérenger Largeau ◽  
Anne-Claire Dupont ◽  
Denis Guilloteau ◽  
Maria-João Santiago-Ribeiro ◽  
Nicolas Arlicot

Peripheral sterile inflammatory diseases (PSIDs) are a heterogeneous group of disorders that gathers several chronic insults involving the cardiovascular, respiratory, gastrointestinal, or musculoskeletal system and wherein inflammation is the cornerstone of the pathophysiology. In PSID, timely characterization and localization of inflammatoryfociare crucial for an adequate care for patients. In brain diseases,in vivopositron emission tomography (PET) exploration of inflammation has matured over the last 20 years, through the development of radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO) as molecular biomarkers of activated microglia. Recently, TSPO has been introduced as a possible molecular target for PSIDs PET imaging, making this protein a potential biomarker to address disease heterogeneity, to assist in patient stratification, and to contribute to predicting treatment response. In this review, we summarized the major research advances recently made in the field of TSPO PET imaging in PSIDs. Promising preliminary results have been reported in bowel, cardiovascular, and rheumatic inflammatory diseases, consolidated by preclinical studies. Limitations of TSPO PET imaging in PSIDs, regarding both its large expression in healthy peripheral tissues, unlike in central nervous system, and the production of peripheral radiolabeled metabolites, are also discussed, regarding their possible consequences on TSPO PET signal’s quantification.



2020 ◽  
Author(s):  
Matthew Zammit ◽  
Yunlong Tao ◽  
Miles Olsen ◽  
Jeanette Metzger ◽  
Scott Vermilyea ◽  
...  

Abstract Purpose The aim of this study was to examine whether the translocator protein 18-kDa (TSPO) PET ligand [ 18 F]FEPPA has the sensitivity for detecting changes in microglial activation in hemiparkinsonian rhesus macaques treated with allogeneic grafts of induced pluripotent stem cell-derived midbrain dopaminergic neurons (iPSC-mDA). Methods In vivo positron emission tomography (PET) imaging with [ 18 F]FEPPA was used in conjunction with postmortem CD68 immunostaining to evaluate neuroinflammation in the brains of hemiparkinsonian rhesus macaques (n = 6) that received allogeneic iPSC-mDA grafts in the putamen ipsilateral to MPTP administration. Results Based on visual inspection of the imaging data and assessment of radiotracer uptake, nonhuman primates with allogeneic grafts showed increased [ 18 F]FEPPA binding at the graft sites relative to the contralateral putamen. From PET asymmetry analysis of the images, the mean asymmetry index of the monkeys was AI = -0.110 ± 0.025. Evaluation and scoring of CD68 immunoreactivity by an investigator blind to the treatment identified significantly more neuroinflammation in the grafted areas of the putamen compared to the contralateral nucleus (p = 0.0004). [ 18 F]FEPPA PET standard uptake values normalized to the contralateral putamen (SUV norm ) showed a positive correlation with CD68 immunoreactivity ratings in the monkeys (Pearson’s r = 0.83; p = 0.0008). Conclusion These findings reveal that [ 18 F]FEPPA PET is an effective marker for detecting increased microglial activation and demonstrate sufficient sensitivity to detect small changes in neuroinflammation in vivo following allogeneic cell engraftment.



2018 ◽  
Vol 24 (11) ◽  
pp. 1399-1412 ◽  
Author(s):  
Heidi Högel ◽  
Eero Rissanen ◽  
Anna Vuorimaa ◽  
Laura Airas

Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.



2020 ◽  
Author(s):  
Chen Huang ◽  
Fan Ding ◽  
Zhoumi Hu ◽  
Mengxin Wang ◽  
Wenxian Peng ◽  
...  

Abstract Purpose Translocator protein (TSPO), an out-mitochondrial membrane protein, is regarded as a key biomarker for neuroinflammation in a variety of neurodegenerative diseases. In this study, we aim to evaluate two highly specific TSPO radiotracers 18F-VUIIS1009A and 18F-VUIIS1009B in a mild cerebral ischemic rat model, and to compare their in vivo performance to the well-established TSPO probe 18F-DPA-714 for neuroinflammation imaging. With multiple graphic analytical methods tested and macro parameters determined, we propose to find a suitable and best quantification method to profile neuroinflammation and measure TSPO density with the three TSPO radiotracers. Methods Cerebral ischemia rat model was created and imaged using 18F-VUIIS1009A, 18F-VUIIS1009B and 18F-DPA-714. Displacement studies using cold analogs were performed to evaluate the binding specificities of 18F-VUIIS1009A and 18F-VUIIS1009B individually. Imaging analysis using arterial plasma input functions (AIFs) was employed to generate Logan plots and parametric images of total distribution volume (VT) for each radiotracer. Reference Logan model using healthy brain as a reference region was introduced to generate parametric images for binding potential (BPND). Results When compared to 18F-DPA-714, 18F-VUIIS1009B demonstrated higher in vitro binding specificity, binding potential (BPND) and distribution volume ratio (DVR). Parameter images of BPND and VT also indicate 18F-VUIIS1009B has a superior imaging profile when compared with other two radiotracers in TSPO imaging. Correlation analysis between BPND for 18F-VUIIS1009B and 18F-DPA-714 also indicates 18F-VUIIS1009B is more sensitive than 18F-DPA-714 in TSPO density measurement. Conclusions This study demonstrates the superiority of 18F-VUIIS1009B to 18F-VUIIS1009A and 18F-DPA-714 in the neuroinflammation imaging. It also demonstrates that 18F-VUIIS1009B PET imaging coupled with parameter mapping (VT and BPND) and graphic analysis holds great promise for neuroinflammation characterization and TSPO density measurement.



2020 ◽  
Author(s):  
Chen Huang ◽  
Fan Ding ◽  
Yong Hao ◽  
Zhoumi Hu ◽  
Cheng Wang ◽  
...  

Abstract Purpose: Translocator protein (TSPO), an outer mitochondrial membrane protein, is regarded as a key biomarker for neuroinflammation in a variety of neurodegenerative diseases. In this study, we aim to evaluate two highly specific TSPO radiotracers [18F]VUIIS1009A and [18F]VUIIS1009B in a mild cerebral ischemic rat model, and to compare their in vivo performance to the well-established TSPO probe [18F]DPA-714 for neuroinflammation imaging. With multiple graphic analytical methods tested and macro parameters determined, we propose to find a suitable and best quantification method to profile neuroinflammation and measure TSPO density with the three TSPO radiotracers.Methods: Cerebral ischemia rat model was created and imaged using [18F]VUIIS1009A, [18F]VUIIS1009B and [18F]DPA-714. Displacement studies using non-radioactive analogs were performed to evaluate the binding specificities of [18F]VUIIS1009A and [18F]VUIIS1009B individually. Imaging analysis using arterial plasma input functions (AIFs) was employed to generate Logan plots and parametric images of total distribution volume (VT) for each radiotracer. Reference Logan model using contralateral brain as a reference region was introduced to generate parametric images for binding potential (BPND). Results: When compared to [18F]DPA-714, [18F]VUIIS1009B demonstrated higher binding potential (BPND) and distribution volume ratio (DVR). Parameter images of BPND and VT also indicate [18F]VUIIS1009B has a superior imaging profile with higher BPND and DVR when compared with other two radiotracers in TSPO imaging. Correlation analysis between BPND for [18F]VUIIS1009B and [18F]DPA-714 also indicates [18F]VUIIS1009B is more sensitive than [18F]DPA-714 in TSPO density measurement.Conclusions: This study demonstrates the superiority of [18F]VUIIS1009B to [18F]VUIIS1009A and [18F]DPA-714 in the neuroinflammation imaging. It also demonstrates that [18F]VUIIS1009B PET imaging coupled with parameter mapping (VT and BPND) and graphic analysis using Logan analysis and reference Logan analysis holds great promise for neuroinflammation characterization and TSPO density measurement.



2020 ◽  
Author(s):  
Matthew Zammit ◽  
Yunlong Tao ◽  
Miles Olsen ◽  
Jeanette Metzger ◽  
Scott Vermilyea ◽  
...  

Abstract Purpose: The aim of this study was to examine whether the translocator protein 18-kDa (TSPO) PET ligand [18F]FEPPA has the sensitivity for detecting changes in CD68 positive microglial/macrophage activation in hemiparkinsonian rhesus macaques treated with allogeneic grafts of induced pluripotent stem cell-derived midbrain dopaminergic neurons (iPSC-mDA).Methods: In vivo positron emission tomography (PET) imaging with [18F]FEPPA was used in conjunction with postmortem CD68 immunostaining to evaluate neuroinflammation in the brains of hemiparkinsonian rhesus macaques (n = 6) that received allogeneic iPSC-mDA grafts in the putamen ipsilateral to MPTP administration. Results: Based on assessment of radiotracer uptake and confirmed by visual inspection of the imaging data, nonhuman primates with allogeneic grafts showed increased [18F]FEPPA binding at the graft sites relative to the contralateral putamen. From PET asymmetry analysis of the images, the mean asymmetry index of the monkeys was AI = -0.085 ± 0.018. Evaluation and scoring of CD68 immunoreactivity by an investigator blind to the treatment identified significantly more neuroinflammation in the grafted areas of the putamen compared to the contralateral putamen (p = 0.0004). [18F]FEPPA PET AI showed a positive correlation with CD68 immunoreactivity AI ratings in the monkeys (Spearman’s ρ = 0.94; p = 0.005). Conclusion: These findings reveal that [18F]FEPPA PET is an effective marker for detecting increased CD68 positive microglial/macrophage activation and demonstrate sufficient sensitivity to detect changes in neuroinflammation in vivo following allogeneic cell engraftment.



2019 ◽  
Vol 6 (4) ◽  
pp. e574 ◽  
Author(s):  
Marcus Sucksdorff ◽  
Jouni Tuisku ◽  
Markus Matilainen ◽  
Anna Vuorimaa ◽  
Sarah Smith ◽  
...  

ObjectiveTo evaluate whether natalizumab treatment reduces microglial activation in MS.MethodsWe measured microglial activation using the 18-kDa translocator protein (TSPO)-binding radioligand [11C]PK11195 and PET imaging in 10 patients with MS before and after 1 year treatment with natalizumab. Microglial activation was evaluated as the distribution volume ratio (DVR) of the specifically bound radioligand in brain white and gray matter regions of interest. MRI and disability measurements were performed for comparison. Evaluation was performed identically with 11 age- and sex-matched patients with MS who had no MS therapy.ResultsNatalizumab treatment reduced microglial activation in the normal-appearing white matter (NAWM; baseline DVR vs DVR after 1 year of treatment 1.25 vs 1.22, p = 0.014, Wilcoxon) and at the rim of chronic lesions (baseline DVR vs DVR after 1 year of treatment 1.24 vs 1.18, p = 0.014). In patients with MS with no treatment, there was an increase in microglial activation at the rim of chronic lesions (1.23 vs 1.27, p = 0.045). No alteration was observed in microglial activation in gray matter areas. In the untreated patient group, higher microglial activation at baseline was associated with more rapid disability progression during an average of 4 years of follow-up.ConclusionsTSPO-PET imaging can be used as a tool to assess longitudinal changes in microglial activation in the NAWM and in the perilesional areas in the MS brain in vivo. Natalizumab treatment reduces the diffuse compartmentalized CNS inflammation related to brain resident innate immune cells.



Sign in / Sign up

Export Citation Format

Share Document