scholarly journals Non-muscle myosin II in kidney morphogenesis

2017 ◽  
Vol 13 (7) ◽  
pp. 384-384
Author(s):  
Katharine H. Wrighton
Haematologica ◽  
2018 ◽  
Vol 103 (12) ◽  
pp. 1997-2007 ◽  
Author(s):  
Pedro L. Moura ◽  
Bethan R. Hawley ◽  
Tosti J. Mankelow ◽  
Rebecca E. Griffiths ◽  
Johannes G.G. Dobbe ◽  
...  

2015 ◽  
Vol 43 (12) ◽  
pp. 3025-3039 ◽  
Author(s):  
O. Moreno-Arotzena ◽  
C. Borau ◽  
N. Movilla ◽  
M. Vicente-Manzanares ◽  
J. M. García-Aznar

Physiology ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 213-218 ◽  
Author(s):  
Caspar Rüegg ◽  
Claudia Veigel ◽  
Justin E. Molloy ◽  
Stephan Schmitz ◽  
John C. Sparrow ◽  
...  

Muscle myosin II is an ATP-driven, actin-based molecular motor. Recent developments in optical tweezers technology have made it possible to study movement and force production on the single-molecule level and to find out how different myosin isoforms may have adapted to their specific physiological roles.


2021 ◽  
Author(s):  
Anja Schmidt ◽  
Long Li ◽  
Zhiyi Lv ◽  
Shuling Yan ◽  
Jörg Großhans

Rho signaling with its major targets the formin Dia, Rho kinase (Rok) and non-muscle myosin II control turnover, amount and contractility of actomyosin. Much less investigated has been a potential function for the distribution of F-actin plus and minus ends. In syncytial Drosophila embryos Rho1 signaling is high between actin caps, i. e. the cortical intercap region. Capping protein binds to free plus ends of F-actin to prevent elongation of the filament. Capping protein has served as a marker to visualize the distribution of F-actin plus ends in cells and in vitro. Here, we probed the distribution of plus ends with capping protein in syncytial Drosophila embryos. We found that Capping proteins are specifically enriched in the intercap region similar to Dia and MyoII but distinct from overall F-actin. The intercap enrichment of Capping protein was impaired in dia mutants and embryos, in which Rok and MyoII activation was inhibited. Our observations reveal that Dia and Rok/MyoII control Capping protein enrichment and support a model that Dia and Rok/MyoII control the organization of cortical actin cytoskeleton downstream of Rho1 signaling.


2021 ◽  
Author(s):  
Hanqing Guo ◽  
Michael Swan ◽  
Shicheng Huang ◽  
Bing He

Apical constriction driven by non-muscle myosin II (″myosin″) provides a well-conserved mechanism to mediate epithelial folding. It remains unclear how contractile forces near the apical surface of a cell sheet drive out-of-plane bending of the sheet and whether myosin contractility is required throughout folding. By optogenetic-mediated acute inhibition of myosin, we find that during Drosophila mesoderm invagination, myosin contractility is critical to prevent tissue relaxation during the early, ″priming″ stage of folding but is dispensable for the actual folding step after the tissue passes through a stereotyped transitional configuration, suggesting that the mesoderm is mechanically bistable during gastrulation. Combining computer modeling and experimental measurements, we show that the observed mechanical bistability arises from an in-plane compression from the surrounding ectoderm, which promotes mesoderm invagination by facilitating a buckling transition. Our results indicate that Drosophila mesoderm invagination requires a joint action of local apical constriction and global in-plane compression to trigger epithelial buckling.


Cell Reports ◽  
2018 ◽  
Vol 24 (4) ◽  
pp. 1060-1070.e4 ◽  
Author(s):  
Michele L. Markwardt ◽  
Nicole E. Snell ◽  
Min Guo ◽  
Yicong Wu ◽  
Ryan Christensen ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1458 ◽  
Author(s):  
Gloria Asensio-Juárez ◽  
Clara Llorente-González ◽  
Miguel Vicente-Manzanares

The MYH9 gene encodes the heavy chain (MHCII) of non-muscle myosin II A (NMII-A). This is an actin-binding molecular motor essential for development that participates in many crucial cellular processes such as adhesion, cell migration, cytokinesis and polarization, maintenance of cell shape and signal transduction. Several types of mutations in the MYH9 gene cause an array of autosomal dominant disorders, globally known as MYH9-related diseases (MYH9-RD). These include May-Hegglin anomaly (MHA), Epstein syndrome (EPS), Fechtner syndrome (FTS) and Sebastian platelet syndrome (SPS). Although caused by different MYH9 mutations, all patients present macrothrombocytopenia, but may later display other pathologies, including loss of hearing, renal failure and presenile cataracts. The correlation between the molecular and cellular effects of the different mutations and clinical presentation are beginning to be established. In this review, we correlate the defects that MYH9 mutations cause at a molecular and cellular level (for example, deficient filament formation, altered ATPase activity or actin-binding) with the clinical presentation of the syndromes in human patients. We address why these syndromes are tissue restricted, and the existence of possible compensatory mechanisms, including residual activity of mutant NMII-A and/or the formation of heteropolymers or co-polymers with other NMII isoforms.


Author(s):  
Neil Turner ◽  
Bertrand Knebelmann

MYH9 encodes one of three heavy chain isoforms for the non-muscle myosin II (NM II) molecule. NM II is involved in cell structure and shape and motility. Myosin II is very widely expressed but MYH9 is highly expressed in podocytes. MYH9 diseases are characterized by various combinations of autosomal dominant progressive, proteinuric renal disease, giant platelets with low platelet counts, progressive sensorineural hearing impairment, granulocyte inclusions, and in some patients also cataracts. Although the eponyms Epstein and Fechtner have been given to MYH9 renal syndromes, there is a spectrum of manifestations of MYH9 diseases that do not correlate perfectly with genotype. They are best described as MYH9-associated renal disease. The occurrence of progressive deafness and renal failure led to this condition being considered an Alport syndrome variant in the past, but phenotype as well as molecular genetics clearly separate the disorders.


Development ◽  
2019 ◽  
Vol 146 (21) ◽  
pp. dev179150 ◽  
Author(s):  
Daniel S. Osório ◽  
Fung-Yi Chan ◽  
Joana Saramago ◽  
Joana Leite ◽  
Ana M. Silva ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document