scholarly journals Deep brain stimulation might alleviate parkinsonism by reducing excessive synchronization in primary motor cortex

2015 ◽  
Vol 11 (5) ◽  
pp. 246-246 ◽  
Author(s):  
Hemi Malkki
2018 ◽  
Vol 38 (19) ◽  
pp. 4556-4568 ◽  
Author(s):  
Doris D. Wang ◽  
Coralie de Hemptinne ◽  
Svjetlana Miocinovic ◽  
Jill L. Ostrem ◽  
Nicholas B. Galifianakis ◽  
...  

Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 275-275
Author(s):  
Yalda Shahriari ◽  
Mahsa Malekmohammadi ◽  
Andrew B O’Keeffe ◽  
Xiao Hu ◽  
Nader Pouratian

Abstract INTRODUCTION Deep Brain Stimulation (DBS) of Globus Pallidus internus (GPi) is an effective therapy to manage Parkinson disease (PD) symptoms. Despite its documented clinical efficacy, the underlying neural oscillatory mechanisms of GPi-DBS is still not well understood. In this study, we evaluate the hypothesis that therapeutic effects of DBS are mediated by changes in the cortical-subcortical coherence. METHODS Seven patients with PD underwent GPi-DBS implantation. Simultaneous recordings of GPi local field potentials (LFPs) and ipsilateral motor cortex electrocorticography (ECoG) were obtained intra-operatively both off and on GPi stimulation. Eighteen seconds of data were used for each condition and the mean coherence was calculated over five different frequency bands of Alpha (8-12 Hz), Low Beta (13-20 Hz), High Beta (21-35 Hz), Low Gamma (36-80 Hz), and High Gamma (81-100 Hz). RESULTS >We found a statistically significant (p-value corrected <0.02, Friedman test) reduction of pallidocortical coherence in the High Beta frequency band. No statistically significant difference was observed in the other frequency bands between off and on DBS conditions. This decrease was specific to the primary motor cortex, and no statistical cortical-subcortical coherence difference was observed at the premotor and sensorimotor sites between the two conditions. CONCLUSION These findings suggest pallidocortical High Beta coupling may be a critical mechanism in the pathophysiology of PD. GPi-DBS might, therefore, exert their therapeutic effect by inhibition of this exaggerated pallidocortical High Beta coupling. A better understanding of the DBS mechanisms on the alleviation of PD symptoms can contribute to the development of closed-loop DBS in which the patients' neurophysiological parameters will be considered in optimizing the DBS parameters.


2020 ◽  
Vol 40 (10) ◽  
pp. 2166-2177 ◽  
Author(s):  
Luke A. Johnson ◽  
Jing Wang ◽  
Shane D. Nebeck ◽  
Jianyu Zhang ◽  
Matthew D. Johnson ◽  
...  

2020 ◽  
Vol 68 (8) ◽  
pp. 235
Author(s):  
Patrick Senatus ◽  
Sarah Zurek ◽  
Milind Deogaonkar

Neurosurgery ◽  
2015 ◽  
Vol 76 (6) ◽  
pp. 766-776 ◽  
Author(s):  
Marie-Therese Forster ◽  
Alexander Claudius Hoecker ◽  
Jun-Suk Kang ◽  
Johanna Quick ◽  
Volker Seifert ◽  
...  

AbstractBACKGROUND:Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures.OBJECTIVE:To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking.METHODS:Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift.RESULTS:Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P &lt; .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation.CONCLUSION:The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.


Sign in / Sign up

Export Citation Format

Share Document