scholarly journals EGR1 reactivation by histone deacetylase inhibitors promotes synovial sarcoma cell death through the PTEN tumor suppressor

Oncogene ◽  
2010 ◽  
Vol 29 (30) ◽  
pp. 4352-4361 ◽  
Author(s):  
L Su ◽  
H Cheng ◽  
A V Sampaio ◽  
T O Nielsen ◽  
T M Underhill
2008 ◽  
Vol 68 (11) ◽  
pp. 4303-4310 ◽  
Author(s):  
Joanna M. Lubieniecka ◽  
Diederik R.H. de Bruijn ◽  
Le Su ◽  
Anke H.A. van Dijk ◽  
Subbaya Subramanian ◽  
...  

Sarcoma ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Anne Nguyen ◽  
Le Su ◽  
Belinda Campbell ◽  
Neal M. Poulin ◽  
Torsten O. Nielsen

Current systemic therapies have little curative benefit for synovial sarcoma. Histone deacetylase (HDAC) inhibitors and the heat shock protein 90 (Hsp90) inhibitor 17-AAG have recently been shown to inhibit synovial sarcoma in preclinical models. We tested combinations of 17-AAG with the HDAC inhibitor MS-275 for synergism by proliferation and apoptosis assays. The combination was found to be synergistic at multiple time points in two synovial sarcoma cell lines. Previous studies have shown that HDAC inhibitors not only induce cell death but also activate the survival pathway NF-κB, potentially limiting therapeutic benefit. As 17-AAG inhibits activators of NF-κB, we tested if 17-AAG synergizes with MS-275 through abrogating NF-κB activation. In our assays, adding 17-AAG blocks NF-κB activation by MS-275 and siRNA directed against histone deacetylase 3 (HDAC3) recapitulates the effects of MS-275. Additionally, we find that the NF-κB inhibitor BAY 11-7085 synergizes with MS-275. We conclude that agents inhibiting NF-κB synergize with HDAC inhibitors against synovial sarcoma.


2018 ◽  
Vol 19 (12) ◽  
pp. 3952 ◽  
Author(s):  
Maria Mrakovcic ◽  
Lauren Bohner ◽  
Marcel Hanisch ◽  
Leopold F. Fröhlich

Tumor development and progression is the consequence of genetic as well as epigenetic alterations of the cell. As part of the epigenetic regulatory system, histone acetyltransferases (HATs) and deacetylases (HDACs) drive the modification of histone as well as non-histone proteins. Derailed acetylation-mediated gene expression in cancer due to a delicate imbalance in HDAC expression can be reversed by histone deacetylase inhibitors (HDACi). Histone deacetylase inhibitors have far-reaching anticancer activities that include the induction of cell cycle arrest, the inhibition of angiogenesis, immunomodulatory responses, the inhibition of stress responses, increased generation of oxidative stress, activation of apoptosis, autophagy eliciting cell death, and even the regulation of non-coding RNA expression in malignant tumor cells. However, it remains an ongoing issue how tumor cells determine to respond to HDACi treatment by preferentially undergoing apoptosis or autophagy. In this review, we summarize HDACi-mediated mechanisms of action, particularly with respect to the induction of cell death. There is a keen interest in assessing suitable molecular factors allowing a prognosis of HDACi-mediated treatment. Addressing the results of our recent study, we highlight the role of p53 as a molecular switch driving HDACi-mediated cellular responses towards one of both types of cell death. These findings underline the importance to determine the mutational status of p53 for an effective outcome in HDACi-mediated tumor therapy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2834-2834 ◽  
Author(s):  
Hani Abdulkadir ◽  
Jennine Grootens ◽  
Matilda Kjellander ◽  
Eva Hellstrom Lindberg ◽  
Gunnar Nilsson ◽  
...  

Abstract Systemic mastocytosis (SM) is a myeloproliferative disease for which there is currently no specific therapy. Over 90% of the patients carry the D816V point mutation that renders the KIT receptor constitutively active. In the current study, we assessed the sensitivity of mast cell line HMC1.2 and primary SM patient mast cells to histone deacetylase inhibitors, and found that SAHA is most efficient. SAHA induced a rapid downregulation of KIT mRNA, with a subsequent reduction in total KIT protein as well as cell surface KIT. This was followed by major mast cell apoptosis. Primary SM patient mast cells cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas healthy subject mast cells were unaffected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive disease, with almost 100% cell death among mast cells from the mast cell leukemia patient. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/totalH3 decreased significantly in the KIT region, due to an increase in H3 density. This epigenetic silencing was specific to the KIT region and not seen in control genes upstream and downstream of KIT. Primary analysis of ChIP-seq data for histone marks H3K4me3 and H3K27me3, demonstrates a downregulation of transcription factors involved in activation of KIT receptor, such as MAPK, for the SAHA treated samples. This indicates an indirect epigenetic silencing of KIT. Our results therefore demonstrate that SAHA epigenetically silences KIT, and work is ongoing to elucidate the exact mechanisms of KIT regulation. Altogether, SAHA maybe a specific treatment for SM. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document