RFWD2 induces cellular proliferation and selective proteasome inhibitor resistance by mediating P27 ubiquitination in multiple myeloma

Leukemia ◽  
2020 ◽  
Author(s):  
Chunyan Gu ◽  
Ting Lu ◽  
Wang Wang ◽  
Miaomiao Shao ◽  
Rongfang Wei ◽  
...  
Author(s):  
Chunyan Gu ◽  
Yajun Wang ◽  
Lulin Zhang ◽  
Li Qiao ◽  
Shanliang Sun ◽  
...  

Abstract Background Currently, multiple myeloma (MM) is still an incurable plasma cell malignancy in urgent need of novel therapeutic targets and drugs. Methods Bufalin was known as a highly toxic but effective anti-cancer compound. We used Bufalin as a probe to screen its potential targets by proteome microarray, in which AHSA1 was the unique target of Bufalin. The effects of AHSA1 on cellular proliferation and drug resistance were determined by MTT, western blot, flow cytometry, immunohistochemistry staining and xenograft model in vivo. The potential mechanisms of Bufalin and KU-177 in AHSA1/HSP90 were verified by co-immunoprecipitation, mass spectrometry, site mutation and microscale thermophoresis assay. Results AHSA1 expression was increased in MM samples compared to normal controls, which was significantly associated with MM relapse and poor outcomes. Furthermore, AHSA1 promoted MM cell proliferation and proteasome inhibitor (PI) resistance in vitro and in vivo. Mechanism exploration indicated that AHSA1 acted as a co-chaperone of HSP90A to activate CDK6 and PSMD2, which were key regulators of MM proliferation and PI resistance respectively. Additionally, we identified AHSA1-K137 as the specific binding site of Bufalin on AHSA1, mutation of which decreased the interaction of AHSA1 with HSP90A and suppressed the function of AHSA1 on mediating CDK6 and PSMD2. Intriguingly, we discovered KU-177, an AHSA1 selective inhibitor, and found KU-177 targeting the same site as Bufalin. Bufalin and KU-177 treatments hampered the proliferation of flow MRD-positive cells in both primary MM and recurrent MM patient samples. Moreover, KU-177 abrogated the cellular proliferation and PI resistance induced by elevated AHSA1, and decreased the expression of CDK6 and PSMD2. Conclusions We demonstrate that AHSA1 may serve as a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma.


2019 ◽  
Vol 1865 (6) ◽  
pp. 1666-1676 ◽  
Author(s):  
Daniela Brünnert ◽  
Marianne Kraus ◽  
Thorsten Stühmer ◽  
Stefanie Kirner ◽  
Robin Heiden ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 280-280 ◽  
Author(s):  
Bingzong Li ◽  
Hua Wang ◽  
Robert Z. Orlowski

Abstract Background Proteasome inhibition with bortezomib has revolutionized the treatment of multiple myeloma, but the vast majority of patients eventually develop clinical bortezomib resistance through poorly understood mechanisms. One of the most conserved cellular responses to proteasome inhibition is to up-regulate proteasome subunit expression, presumably with the goal of enhancing proteasome activity and restoring intracellular protein homeostasis. We therefore hypothesized that proteasome inhibitor resistance could be associated with enhanced proteasome assembly, and that suppression of this assembly process could help restore drug sensitivity. The current studies focused on POMP, which is involved in addition of catalytically active b subunits to the hemiproteasome ring initially formed by structural a subunits. Methods We studied ANBL-6, KAS-6/1, OPM-2, and RPMI 8226 multiple myeloma cell lines which had acquired bortezomib resistance through prolonged exposure to increasing drug concentrations, and compared them to their drug-naïve, vehicle-treated counterparts. In addition, we evaluated primary cells derived from patients with myeloma, and examined an in vivo murine xenograft model of human myeloma. Results Bortezomib-resistant (V10R) ANBL-6, KAS-6/1, OPM-2, and RPMI 8226 cell lines showed enhanced levels of POMP mRNA by quantitative (q) PCR compared to their drug-sensitive counterparts, which was associated with higher POMP protein levels seen by immunoblotting. Exogenous over-expression of POMP in drug-naïve OPM-2 and KAS-6/1 cells was sufficient by itself to induce resistance to both bortezomib and carfilzomib. Conversely, suppression of POMP with one of two different Lentiviral small hairpin (sh) RNAs restored sensitivity in OPM-2 and KAS-6/1 V10R cells to bortezomib and carfilzomib. Since no known pharmaceuticals directly target POMP, we examined its promoter region, and found a consensus binding site for nuclear factor (erythroid-derived 2)-like (NRF) 2. Consistent with a role of NRF2 in POMP expression, NRF2 mRNA and protein were increased in V10R myeloma cells, and in drug-naïve cells treated with bortezomib. Moreover, transfection of cells with NRF2 cDNA activated a POMP promoter reporter, while chromatin immunoprecipitation with anti-NRF2 antibodies preferentially precipitated sequences near the POMP promoter. Also, NRF2 over-expression induced POMP and enhanced proteasome chymotrypsin-like activity, while its suppression had the opposite effects. All trans-retinoic acid (ATRA) blocked nuclear accumulation of NRF2 in OPM-2 and KAS-6/1 V10R cells, and reduced expression of POMP. Combinations of bortezomib with ATRA showed enhanced activity against these drug-resistant cell lines in association with greater proteasome inhibition, and were synergistic in drug-naïve cells. In primary samples, ATRA with bortezomib induced a greater reduction in viability than did either treatment alone. Finally, in a murine xenograft model with OPM-2 V10R cells, neither ATRA nor bortezomib showed substantial activity, while the combination regimen, by comparison, retained efficacy. Conclusions Taken together, our data support the hypotheses that NRF-2-influenced POMP over-expression contributes to proteasome inhibitor resistance in multiple myeloma, while approaches targeting POMP hold promise in overcoming resistance. Moreover, they provide a framework for translation of proteasome inhibitors with ATRA to the clinic to enhance activity, and to overcome resistance to this important class of anti-myeloma agents. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 25 (6) ◽  
pp. 1923-1935 ◽  
Author(s):  
Hongxia Xu ◽  
Huiying Han ◽  
Sha Song ◽  
Nengjun Yi ◽  
Chen'ao Qian ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3068-3068
Author(s):  
Ye Yang ◽  
Mengjie Guo ◽  
Chunyan Gu

Purpose: In recent years, with the emergence of targeted proteasome inhibitors (PIs), the treatment of multiple myeloma (MM) has made great progress and significantly improves the survival rate of patients. However, MM remains an incurable disease, mainly due to the recurrence of drug resistance. The constitutive photomorphogenic 1 (RFWD2, also known as COP1), is closely related to the occurrence and development of tumors, but its role in MM is largely unknown. This study was aimed to explore the mechanism of RFWD2 on cell proliferation and resistance to proteasome inhibitor in MM. Experimental Design: Using gene expression profiling (GEP) samples, we verified the relation of RFWD2 to MM patients' survival and drug-resistance. The effect of RFWD2 on cell proliferation was confirmed by MTT and cell cycle analysis in RFWD2-overexpressed and RFWD2-knockdown MM cells. MTT and apoptosis experiments were performed to evaluate whether RFWD2 influenced the sensitivity of MM cells to several chemotherapy drugs. MM xenografts were established in immunodeficient NOD/SCID mice by injecting wild-type or RFWD2 over-expression MM cells with drug intervention. The mechanism of drug resistance was elucidated by analyzing the association of RFWD2 with E3 ligase of p27. Bortezomib-resistant RPMI 8226 cells were used to construct RFWD2 knockdown cells, which were injected into NOD/SCID mice to assess the effect of RFWD2 on bortezomib resistance in vivo. Results: RFWD2 expression was closely related to poor outcome, relapse and bortezomib resistance in MM patients' GEP cohorts. Elevated RFWD2 induced cell proliferation, while decreased RFWD2 inhibited cell proliferation and induced apoptosis in MM cells. RFWD2-overexpression MM cells resulted in PIs resistance, however, no chemotherapy resistance to adriamycin and dexamethasone was observed in vitro. In addition, overexpressing RFWD2 in MM cells led to bortezomib resistance rather than adriamycin resistance in myeloma xenograft mouse model. RFWD2 regulated the ubiquitination degradation of P27 by interacting with RCHY1 ubiquitin ligase. The knockdown of RFWD2 in bortezomib-resistant RPMI 8226 cells overcame bortezomib resistance in vivo. Conclusions: Our data demonstrate that elevated RFWD2 induces MM cell proliferation and resistance to PIs, but not to adriamycin and dexamethasone both in vitro and in vivo through mediating the ubiquitination of p27. Collectively, RFWD2 is a novel promising therapeutic target in MM. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document