scholarly journals Integrative brain transcriptome analysis links complement component 4 and HSPA2 to the APOE ε2 protective effect in Alzheimer disease

Author(s):  
Rebecca Panitch ◽  
Junming Hu ◽  
Jaeyoon Chung ◽  
Congcong Zhu ◽  
Gaoyuan Meng ◽  
...  

AbstractMechanisms underlying the protective effect of apolipoprotein E (APOE) ε2 against Alzheimer disease (AD) are not well understood. We analyzed gene expression data derived from autopsied brains donated by 982 individuals including 135 APOE ɛ2/ɛ3 carriers. Complement pathway genes C4A and C4B were among the most significantly differentially expressed genes between ɛ2/ɛ3 AD cases and controls. We also identified an APOE ε2/ε3 AD-specific co-expression network enriched for astrocytes, oligodendrocytes and oligodendrocyte progenitor cells containing the genes C4A, C4B, and HSPA2. These genes were significantly associated with the ratio of phosphorylated tau at position 231 to total Tau but not with amyloid-β 42 level, suggesting this APOE ɛ2 related co-expression network may primarily be involved with tau pathology. HSPA2 expression was oligodendrocyte-specific and significantly associated with C4B protein. Our findings provide the first evidence of a crucial role of the complement pathway in the protective effect of APOE ε2 for AD.

2020 ◽  
Author(s):  
Rebecca Panitch ◽  
Junming Hu ◽  
Jaeyoon Chung ◽  
Congcong Zhu ◽  
Gaoyuan Meng ◽  
...  

AbstractMechanisms underlying the protective effect of apolipoprotein E (APOE) ε2 against Alzheimer’s disease (AD) are not well understood. We analyzed gene expression data derived from autopsied brains donated by 982 individuals including 135 APOE ε 2/ε 3 carriers. Complement pathway genes C4A and C4B were among the most significantly differentially expressed genes between ε 2/ε 3 AD cases and controls. We also identified an APOE ε2/ε3 AD-specific co-expression network enriched for astrocytes, oligodendrocytes and oligodendrocyte progenitor cells containing the genes C4A, C4B, and HSPA2. These genes were significantly associated with the ratio of phosphorylated tau at position 231 to total Tau but not with amyloid-β 42 level, suggesting this APOE ε 2 related co-expression network may primarily be involved with tau pathology. HSPA2 expression was oligodendrocyte specific and significantly associated with C4B protein. Our findings provide the first evidence of a crucial role of the complement pathway in the protective effect of APOE ε2 for AD.


Stroke ◽  
2021 ◽  
Author(s):  
Lukas Sveikata ◽  
Andreas Charidimou ◽  
Anand Viswanathan

We review the implications of the recently approved aducanumab amyloid-β immunotherapy for treating Alzheimer disease with comorbid cerebral amyloid angiopathy. In clinical trials, amyloid-β immunotherapy has been associated with a high rate of amyloid-related imaging abnormalities, potentially driven by coexisting cerebral amyloid angiopathy. Therefore, immunotherapy’s efficacy in patients may be modified by coexisting cerebrovascular pathology. We discuss the contributions of cerebral amyloid angiopathy on the development of amyloid-related imaging abnormalities and propose strategies to identify cerebral amyloid angiopathy in patients considered for immunotherapy.


2021 ◽  
Author(s):  
Kristen Ibanez ◽  
Karen McFarland ◽  
Jennifer Phillips ◽  
Mariet Allen ◽  
Christian B Lessard ◽  
...  

The S209F variant of Abelson Interactor Protein 3 (ABI3) increases risk for Alzheimer's disease (AD), but little is known about ABI3 function. RNAscope showed Abi3 is expressed in microglial and non-microglial cells, though its increased expression appears to be driven in plaque-associated microglia. Here, we evaluated Abi3-/- mice and document that both Abi3 and its overlapping gene, Gngt2, are disrupted in these mice. Expression of Abi3 and Gngt2 are tightly correlated, and elevated, in rodent models of AD. RNA-seq of the Abi3-Gngt2-/- mice revealed robust induction of an AD-associated neurodegenerative signature, including upregulation of Trem2, Plcg2 and Tyrobp. In APP mice, loss of Abi3-Gngt2 resulted in a gene dose- and age-dependent reduction in A? deposition. Additionally, in Abi3-Gngt2-/- mice, expression of a pro-aggregant form of human tau exacerbated tauopathy and astrocytosis. Further, the AD-associated S209F mutation alters the extent of ABI3 phosphorylation. These data provide an important experimental framework for understanding the role of Abi3-Gngt2 function in AD. Our studies also demonstrate that manipulation of glial function could have opposing effects on amyloid and tau pathology, highlighting the unpredictability of targeting such pathways in AD.


Author(s):  
Eliana Cristina de Brito Toscano ◽  
Natalia Pessoa Rocha ◽  
Beatriz Noele Azevedo Lopes ◽  
Claudia Kimie Suemoto ◽  
Antonio Lucio Teixeira

Background: Alzheimer’s disease (AD) is the main cause of dementia worldwide. The definitive diagnosis of AD is clinicopathological and based on the identification of cerebral deposition of amyloid β (Aβ) plaques and neurofibrillary tangles. However, the link between amyloid cascade and depositions of phosphorylated tau (p-tau) is still missing. In this scenario, inflammasomes might play a relevant role. Experimental models of AD have suggested that Aβ accumulation induces, through microglia, activation of the NLRP3 inflammasome. This activation contributes to the dissemination of Aβ and p-tau, as well as to hyperphosphorylation of tau. Also in experimental models, NLPR1 promoted neuronal pyroptosis. There are neither comprehensive neuropathologic characterization, nor clinicopathologic studies evaluating the NLRP1 and NLRP3 inflammasomes in subjects with AD. Objective: The current mini-review aims to summarize recent and promising findings on the role of NLRP1 and NLRP3 signaling in the pathophysiology of AD. We also sought to highlight the knowledge gap in patients with AD, mainly the lack of clinicopathologic studies on the interaction among inflammasomes, Aβ/tau pathology, and cognitive decline.


Author(s):  
David J. Bonda ◽  
Hyun-pil Lee ◽  
Wataru Kudo ◽  
Xiongwei Zhu ◽  
Mark A. Smith ◽  
...  

The complex neurodegeneration underlying Alzheimer disease (AD), although incompletely understood, is characterised by an aberrant re-entry into the cell cycle in neurons. Pathological evidence, in the form of cell cycle markers and regulatory proteins, suggests that cell cycle re-entry is an early event in AD, which precedes the formation of amyloid-β plaques and neurofibrillary tangles (NFTs). Although the exact mechanisms that induce and mediate these cell cycle events in AD are not clear, significant advances have been made in further understanding the pathological role of cell cycle re-entry in AD. Importantly, recent studies indicate that cell cycle re-entry is not a consequence, but rather a cause, of neurodegeneration, suggesting that targeting of cell cycle re-entry may provide an opportunity for therapeutic intervention. Moreover, multiple inducers of cell cycle re-entry and their interactions in AD have been proposed. Here, we review the most recent advances in understanding the pathological implications of cell cycle re-entry in AD.


2009 ◽  
Vol 67 (4) ◽  
pp. 462-469 ◽  
Author(s):  
Steven E. Arnold ◽  
Edward B. Lee ◽  
Paul J. Moberg ◽  
Lauren Stutzbach ◽  
Hala Kazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document