scholarly journals NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance

Author(s):  
Sahab Arinrad ◽  
Justus B. H. Wilke ◽  
Anna Seelbach ◽  
José Doeren ◽  
Martin Hindermann ◽  
...  

AbstractEncephalitis has an estimated prevalence of ≤0.01%. Even with extensive diagnostic work-up, an infectious etiology is identified or suspected in <50% of cases, suggesting a role for etiologically unclear, noninfectious processes. Mild encephalitis runs frequently unnoticed, despite slight neuroinflammation detectable postmortem in many neuropsychiatric illnesses. A widely unexplored field in humans, though clearly documented in rodents, is genetic brain inflammation, particularly that associated with myelin abnormalities, inducing primary white matter encephalitis. We hypothesized that “autoimmune encephalitides” may result from any brain inflammation concurring with the presence of brain antigen-directed autoantibodies, e.g., against N-methyl-D-aspartate-receptor NR1 (NMDAR1-AB), which are not causal of, but may considerably shape the encephalitis phenotype. We therefore immunized young female Cnp−/− mice lacking the structural myelin protein 2′-3′-cyclic nucleotide 3′-phosphodiesterase (Cnp) with a “cocktail” of NMDAR1 peptides. Cnp−/− mice exhibit early low-grade inflammation of white matter tracts and blood–brain barrier disruption. Our novel mental-time-travel test disclosed that Cnp−/− mice are compromised in what–where–when orientation, but this episodic memory readout was not further deteriorated by NMDAR1-AB. In contrast, comparing wild-type and Cnp−/− mice without/with NMDAR1-AB regarding hippocampal learning/memory and motor balance/coordination revealed distinct stair patterns of behavioral pathology. To elucidate a potential contribution of oligodendroglial NMDAR downregulation to NMDAR1-AB effects, we generated conditional NR1 knockout mice. These mice displayed normal Morris water maze and mental-time-travel, but beam balance performance was similar to immunized Cnp−/−. Immunohistochemistry confirmed neuroinflammation/neurodegeneration in Cnp−/− mice, yet without add-on effect of NMDAR1-AB. To conclude, genetic brain inflammation may explain an encephalitic component underlying autoimmune conditions.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jing Lin ◽  
Dilong Wang ◽  
Linfang Lan ◽  
Yuhua Fan

White matter lesions (WMLs), also known as leukoaraiosis (LA) or white matter hyperintensities (WMHs), are characterized mainly by hyperintensities on T2-weighted or fluid-attenuated inversion recovery (FLAIR) images. With the aging of the population and the development of imaging technology, the morbidity and diagnostic rates of WMLs are increasing annually. WMLs are not a benign process. They clinically manifest as cognitive decline and the subsequent development of dementia. Although WMLs are important, their pathogenesis is still unclear. This review elaborates on the advances in the understanding of the pathogenesis of WMLs, focusing on anatomy, cerebral blood flow autoregulation, venous collagenosis, blood brain barrier disruption, and genetic factors. In particular, the attribution of WMLs to chronic ischemia secondary to venous collagenosis and cerebral blood flow autoregulation disruption seems reasonable. With the development of gene technology, the effect of genetic factors on the pathogenesis of WMLs is gaining gradual attention.


Author(s):  
Priya Balasubramanian ◽  
Tamas Kiss ◽  
Stefano Tarantini ◽  
Ádám Nyúl-Tóth ◽  
Chetan Ahire ◽  
...  

Over two thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.


2012 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Angela E Schellenberg ◽  
Richard Buist ◽  
Marc R Del Bigio ◽  
Henrik Toft-Hansen ◽  
Reza Khorooshi ◽  
...  

2009 ◽  
Vol 37 (1) ◽  
pp. 329-331 ◽  
Author(s):  
Stephen McQuaid ◽  
Paula Cunnea ◽  
Jill McMahon ◽  
Una Fitzgerald

Dysfunction of the BBB (blood–brain barrier) is a major hallmark of MS (multiple sclerosis). Studies in our laboratories over the last decade have shown that increased BBB permeability is associated with decreased expression of TJ (tight junction) proteins in brain capillary endothelial cells. Results have revealed that TJ abnormalities were most common in active lesions (42% of vessels affected), but were also present in inactive lesions (23%) and in MS normal-appearing white matter (13%). Importantly, TJ abnormality was also positively associated with leakage of the serum protein fibrinogen which has recently been shown to be an activator of microglia. TJ abnormality and the resultant vascular permeability in both lesional and non-lesional white matter may impair tissue homoeostasis, which may have effects on disease progression, repair mechanisms and drug delivery.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
G. Hurtado-Alvarado ◽  
E. Domínguez-Salazar ◽  
L. Pavon ◽  
J. Velázquez-Moctezuma ◽  
B. Gómez-González

Sleep is a vital phenomenon related to immunomodulation at the central and peripheral level. Sleep deficient in duration and/or quality is a common problem in the modern society and is considered a risk factor to develop neurodegenerative diseases. Sleep loss in rodents induces blood-brain barrier disruption and the underlying mechanism is still unknown. Several reports indicate that sleep loss induces a systemic low-grade inflammation characterized by the release of several molecules, such as cytokines, chemokines, and acute-phase proteins; all of them may promote changes in cellular components of the blood-brain barrier, particularly on brain endothelial cells. In the present review we discuss the role of inflammatory mediators that increase during sleep loss and their association with general disturbances in peripheral endothelium and epithelium and how those inflammatory mediators may alter the blood-brain barrier. Finally, this manuscript proposes a hypothetical mechanism by which sleep loss may induce blood-brain barrier disruption, emphasizing the regulatory effect of inflammatory molecules on tight junction proteins.


Sign in / Sign up

Export Citation Format

Share Document