Comment to: Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy?

Author(s):  
Guido van Wingen ◽  
Isidoor Bergfeld ◽  
Pelle de Koning ◽  
Ilse Graat ◽  
Judy Luigjes ◽  
...  
Brain ◽  
2020 ◽  
Vol 143 (5) ◽  
pp. 1293-1296
Author(s):  
Jens Kuhn ◽  
Juan Carlos Baldermann

This scientific commentary refers to ‘Deep brain stimulation modulates directional limbic connectivity in obsessive-compulsive disorder’, by Fridgeirsson etal. (doi:10.1093/brain/awaa100).


2013 ◽  
Vol 73 (9) ◽  
pp. e29-e31 ◽  
Author(s):  
Nicole C.R. McLaughlin ◽  
Elizabeth R. Didie ◽  
Andre G. Machado ◽  
Suzanne N. Haber ◽  
Emad N. Eskandar ◽  
...  

Author(s):  
Juan Carlos Baldermann ◽  
Thomas Schüller ◽  
Sina Kohl ◽  
Valerie Voon ◽  
Ningfei Li ◽  
...  

2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Candace Borders ◽  
Frank Hsu ◽  
Alexander J. Sweidan ◽  
Emily S. Matei ◽  
Robert G. Bota

Studies suggest deep brain stimulation (DBS) as a treatment modality for the refractory obsessive-compulsive disorder (OCD). It is unclear where to place the DBS. Various sites are proposed for placement with the ventral capsule/ventral striatum (VC/VS) among the most studied. Herein, we aim to summarize both quantitative Yale-Brown Obsessive-Compulsive Scale (YBOCS) data and qualitative descriptions of the participants’ symptoms when given. A literature search conducted via PubMed yielded 32 articles. We sought to apply a standard based on the utilization of YBOCS. This yielded 153 distinct patients. The outcome measure we focused on in this review is the latest YBOCS score reported for each patient/cohort in comparison to the location of the DBS. A total of 32 articles were found in the search results. In total, 153 distinct patients’ results were reported in these studies. Across this collection of papers, a total of 9 anatomic structures were targeted. The majority of studies showed a better response at the last time point as compared to the first time point. Most patients had DBS at nucleus accumbens followed by VC/VS and the least patients had DBS at the bilateral superolateral branch of the median forebrain bundle and the bilateral basolateral amygdala. The average YBOCS improvement did not seem to directly correlate with the percentile of patients responding to the intervention. Well-controlled, randomized studies with larger sample sizes with close follow up are needed to provide a more accurate determination for placement of DBS for OCD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eduardo Varjão Vieira ◽  
Paula Ricci Arantes ◽  
Clement Hamani ◽  
Ricardo Iglesio ◽  
Kleber Paiva Duarte ◽  
...  

Objective: Deep brain stimulation (DBS) was proposed in 1999 to treat refractory obsessive-compulsive disorder (OCD). Despite the accumulated experience over more than two decades, 30–40% of patients fail to respond to this procedure. One potential reason to explain why some patients do not improve in the postoperative period is that DBS might not have engaged structural therapeutic networks that are crucial to a favorable outcome in non-responders. This article reviews magnetic resonance imaging diffusion studies (DTI-MRI), analyzing neural networks likely modulated by DBS in OCD patients and their corresponding clinical outcome.Methods: We used a systematic review process to search for studies published from 2005 to 2020 in six electronic databases. Search terms included obsessive-compulsive disorder, deep brain stimulation, diffusion-weighted imaging, diffusion tensor imaging, diffusion tractography, tractography, connectome, diffusion analyses, and white matter. No restriction was made concerning the surgical target, DTI-MRI technique and the method of data processing.Results: Eight studies published in the last 15 years were fully assessed. Most of them used 3 Tesla DTI-MRI, and different methods of data acquisition and processing. There was no consensus on potential structures and networks underlying DBS effects. Most studies stimulated the ventral anterior limb of the internal capsule (ALIC)/nucleus accumbens. However, the contribution of different white matter pathways that run through the ALIC for the effects of DBS remains elusive. Moreover, the improvement of cognitive and affective symptoms in OCD patients probably relies on electric modulation of distinct networks.Conclusion: Though, tractography is a valuable tool to understand neural circuits, the effects of modulating different fiber tracts in OCD are still unclear. Future advances on image acquisition and data processing and a larger number of studies are still required for the understanding of the role of tractography-based targeting and to clarify the importance of different tracts for the mechanisms of DBS.


2019 ◽  
Author(s):  
Ningfei Li ◽  
Juan Carlos Baldermann ◽  
Astrid Kibleur ◽  
Svenja Treu ◽  
Harith Akram ◽  
...  

AbstractMultiple surgical targets have been proposed for treating obsessive-compulsive disorder (OCD) with deep brain stimulation (DBS). However, different targets may modulate the same neural network responsible for clinical improvement. Here we analyzed data from four cohorts of OCD patients (N = 50) that underwent DBS to the anterior limb of the internal capsule (ALIC), the nucleus accumbens (NAcc) or the subthalamic nucleus (STN). Fiber tracts that were predominantly connected to electrodes in good or poor DBS responders were isolated from a normative structural connectome and assigned a predictive value. Strikingly, the same fiber bundle was related to treatment response when independently analyzing two large training cohorts that targeted either ALIC or STN. This discriminative tract is a subsection of the ALIC and connects frontal regions (such as the dorsal anterior cingulate, dACC, and ventral prefrontal, vlPFC, cortices to the STN). When informing the tract solely based on one cohort (e.g. ALIC), clinical improvements in the other (e.g. STN) could be significantly predicted, and vice versa. Finally, clinical improvements of eight patients from a third center with electrodes in the NAcc and six patients from a fourth center in which electrodes had been implanted in both STN and ALIC were significantly predicted based on this novel tract-based DBS target. Results suggest a functional role of a limbic hyperdirect pathway that projects from dACC and vlPFC to anteriomedial STN. Obsessive-compulsive symptoms seem to be tractable by modulating the specific bundle isolated here. Our results show that connectivity-derived improvement models can inform clinical improvement across DBS targets, surgeons and centers. The identified tract is now three-dimensionally defined in stereotactic standard space and will be made openly available.


Sign in / Sign up

Export Citation Format

Share Document