diffusion tractography
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 37)

H-INDEX

35
(FIVE YEARS 4)

NeuroImage ◽  
2021 ◽  
pp. 118866
Author(s):  
Ezequiel Gleichgerrcht ◽  
Simon S. Keller ◽  
Lorna Bryant ◽  
Hunter Moss ◽  
Tanja S. Kellermann ◽  
...  

2021 ◽  
Author(s):  
Mingchao Yan ◽  
Wenwen Yu ◽  
Qian Lv ◽  
Qiming Lv ◽  
Tingting Bo ◽  
...  

AbstractResolving trajectories of axonal pathways in the primate prefrontal cortex remains crucial to gain insights into higher-order processes of cognition and emotion, which requires a comprehensive map of axonal projections linking demarcated subdivisions of prefrontal cortex and the rest of brain. Here we report a mesoscale excitatory projectome issued from the ventrolateral prefrontal cortex (vlPFC) to the entire macaque brain by using viral-based genetic axonal tracing in tandem with high-throughput serial two-photon tomography, which demonstrated prominent monosynaptic projections to other prefrontal areas, temporal, limbic and subcortical areas, relatively weak projections to parietal and insular cortices but no projections directly to the occipital lobe. In a common 3D space, we quantitatively validated an atlas of diffusion tractography-derived vlPFC connections with correlative enhanced green fluorescent protein-labelled axonal tracing, and observed generally good agreement except a major difference in the posterior projections of inferior fronto-occipital fasciculus. These findings raise an intriguing question as to how neural information passes along long-range association fiber bundles in macaque brains, and call for the caution of using diffusion tractography to map the wiring diagram of brain circuits.


NeuroImage ◽  
2021 ◽  
pp. 118576
Author(s):  
Scott Trinkle ◽  
Sean Foxley ◽  
Gregg Wildenberg ◽  
Narayanan Kasthuri ◽  
Patrick La Rivière

2021 ◽  
Author(s):  
Pierce Boyne ◽  
Mark DiFrancesco ◽  
Oluwole O. Awosika ◽  
Brady Williamson ◽  
Jennifer Vannest

ABSTRACTThe corticoreticular pathway (CRP) is a major motor tract that provides volitional input to the reticular formation motor nuclei and may be an important mediator of motor recovery after central nervous system damage. However, its cortical origins, trajectory and laterality are incompletely understood in humans. This study aimed to map the human CRP and generate an average CRP template in standard MRI space. Following recently established guidelines, we manually delineated the primary reticular formation motor nucleus (gigantocellular reticular nucleus [GRN]) using several group-mean MRI contrasts from the Human Connectome Project (HCP). CRP tractography was then performed with HCP diffusion-weighted MRI data (N=1,065) by selecting diffusion streamlines that reached both the frontal cortex and GRN. Corticospinal tract (CST) tractography was also performed for comparison. Results suggest that the human CRP has widespread origins, which overlap with the CST across most of the motor cortex and include additional exclusive inputs from the medial and anterior prefrontal cortices. The estimated CRP projected through the anterior and posterior limbs of the internal capsule before partially decussating in the midbrain tegmentum and converging bilaterally on the pontomedullary reticular formation. Thus, the CRP trajectory appears to partially overlap the CST, while being more distributed and anteromedial to the CST in the cerebrum before moving posterior to the CST in the brainstem. These findings have important implications for neurophysiologic testing, cortical stimulation and movement recovery after brain lesions. We expect that our GRN and tract maps will also facilitate future CRP research.HIGHLIGHTSThe corticoreticular pathway (CRP) is a major tract with poorly known human anatomyWe mapped the human CRP with diffusion tractography led by postmortem & animal dataThe CRP appears to originate from most of the motor cortices and further anteriorThe estimated CRP had distributed and bilateral projections to the brainstemThese findings have important implications for motor recovery after brain lesions


2021 ◽  
Vol 15 ◽  
Author(s):  
Uzair Hussain ◽  
Corey A. Baron ◽  
Ali R. Khan

Coordinate invariance of physical laws is central in physics, it grants us the freedom to express observations in coordinate systems that provide computational convenience. In the context of medical imaging there are numerous examples where departing from Cartesian to curvilinear coordinates leads to ease of visualization and simplicity, such as spherical coordinates in the brain's cortex, or universal ventricular coordinates in the heart. In this work we introduce tools that enhance the use of existing diffusion tractography approaches to utilize arbitrary coordinates. To test our method we perform simulations that gauge tractography performance by calculating the specificity and sensitivity of tracts generated from curvilinear coordinates in comparison with those generated from Cartesian coordinates, and we find that curvilinear coordinates generally show improved sensitivity and specificity compared to Cartesian. Also, as an application of our method, we show how harmonic coordinates can be used to enhance tractography for the hippocampus.


Author(s):  
Natalie L. Voets ◽  
Pieter Pretorius ◽  
Martin D. Birch ◽  
Vasileios Apostolopoulos ◽  
Richard Stacey ◽  
...  

Abstract Introduction Despite evidence of correspondence with intraoperative stimulation, there remains limited data on MRI diffusion tractography (DT)’s sensitivity to predict morbidity after neurosurgical oncology treatment. Our aims were: (1) evaluate DT against subcortical stimulation mapping and performance changes during and after awake neurosurgery; (2) evaluate utility of early post-operative DT to predict recovery from post-surgical deficits. Methods We retrospectively reviewed our first 100 awake neurosurgery procedures using DT- neuronavigation. Intra-operative stimulation and performance outcomes were assessed to classify DT predictions for sensitivity and specificity calculations. Post-operative DT data, available in 51 patients, were inspected for tract damage. Results 91 adult brain tumor patients (mean 49.2 years, 43 women) underwent 100 awake surgeries with subcortical stimulation between 2014 and 2019. Sensitivity and specificity of pre-operative DT predictions were 92.2% and 69.2%, varying among tracts. Post-operative deficits occurred after 41 procedures (39%), but were prolonged (> 3 months) in only 4 patients (4%). Post-operative DT in general confirmed surgical preservation of tracts. Post-operative DT anticipated complete recovery in a patient with supplementary motor area syndrome, and indicated infarct-related damage to corticospinal fibers associated with delayed, partial recovery in a second patient. Conclusions Pre-operative DT provided very accurate predictions of the spatial location of tracts in relation to a tumor. As expected, however, the presence of a tract did not inform its functional status, resulting in variable DT specificity among individual tracts. While prolonged deficits were rare, DT in the immediate post-operative period offered additional potential to monitor neurological deficits and anticipate recovery potential.


2021 ◽  
pp. 1-20
Author(s):  
Josh King-Robson ◽  
Heather Wilson ◽  
Marios Politis ◽  

Background: The roles of amyloid-β and tau in the degenerative process of Alzheimer’s disease (AD) remain uncertain. [18F]AV-45 and [18F]AV-1451 PET quantify amyloid-β and tau pathology, respectively, while diffusion tractography enables detection of their microstructural consequences. Objective: Examine the impact of amyloid-β and tau pathology on the structural connectome and cognition, in mild cognitive impairment (MCI) and AD. Methods: Combined [18F]AV-45 and [18F]AV-1451 PET, diffusion tractography, and cognitive assessment in 28 controls, 32 MCI, and 26 AD patients. Results: Hippocampal connectivity was reduced to the thalami, right lateral orbitofrontal, and right amygdala in MCI; alongside the insula, posterior cingulate, right entorhinal, and numerous cortical regions in AD (all p <  0.05). Hippocampal strength inversely correlated with [18F]AV-1451 SUVr in MCI (r = –0.55, p = 0.049) and AD (r = –0.57, p = 0.046), while reductions in hippocampal connectivity to ipsilateral brain regions correlated with increased [18F]AV-45 SUVr in those same regions in MCI (r = –0.33, p = 0.003) and AD (r = –0.31, p = 0.006). Cognitive scores correlated with connectivity of the right temporal pole in MCI (r = –0.60, p = 0.035) and left hippocampus in AD (r = 0.69, p = 0.024). Clinical Dementia Rating Scale scores correlated with [18F]AV-1451 SUVr in multiple areas reflecting Braak stages I-IV, including the right (r = 0.65, p = 0.004) entorhinal cortex in MCI; and Braak stages III-VI, including the right (r = 0.062, p = 0.009) parahippocampal gyrus in AD. Conclusion: Reductions in hippocampal connectivity predominate in the AD connectome, correlating with hippocampal tau in MCI and AD, and with amyloid-β in the target regions of those connections. Cognitive scores correlate with microstructural changes and reflect the accumulation of tau pathology.


Sign in / Sign up

Export Citation Format

Share Document