scholarly journals Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis

Oncogenesis ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Anwar Shams ◽  
Najat Binothman ◽  
Julien Boudreault ◽  
Ni Wang ◽  
Fuad Shams ◽  
...  

AbstractDedifferentiation increased cellular plasticity and stemness are established derivers of tumor heterogeneity, metastasis and therapeutic failure resulting in incurable cancers. Therefore, it is essential to decipher pro/forward-differentiation mechanisms in cancer that may serve as therapeutic targets. We found that interfering with expression of the receptor for the lactogenic hormone prolactin (PRLR) in breast cancer cells representative of the luminal and epithelial breast cancer subtypes (hormone receptor positive (HR+) and HER2-enriched (HER2-E) resulted in loss of their differentiation state, enriched for stem-like cell subpopulations, and increased their tumorigenic capacity in a subtype-specific manner. Loss of PRLR expression in HR+ breast cancer cells caused their dedifferentiation generating a mesenchymal-basal-like phenotype enriched in CD44+ breast cancer stem-like cells (BCSCs) showing high tumorigenic and metastatic capacities and resistance to anti-hormonal therapy. Whereas loss of PRLR expression in HER2-E breast cancer cells resulted in loss of their luminal differentiation yet enriched for epithelial ALDH+ BCSC population showing elevated HER2-driven tumorigenic, multi-organ metastatic spread, and resistance to anti-HER2 therapy. Collectively, this study defines PRLR as a driver of precise luminal and epithelial differentiation limiting cellular plasticity, stemness, and tumorigenesis and emphasizing the function of pro/forward-differentiation pathways as a foundation for the discovery of anti-cancer therapeutic targets.

Medicines ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 32
Author(s):  
Sandra Marijan ◽  
Angela Mastelić ◽  
Anita Markotić ◽  
Nikolina Režić-Mužinić ◽  
Nikolina Vučenović ◽  
...  

The adhesion of cancer cells to vascular endothelium is a critical process in hematogenous metastasis and might be similar to the recruitment of leukocytes at the site of inflammation. It is mediated by E-selectin and its ligands, of which the most stereospecific is a glycoconjugate sialyl Lewis x (CD15s), which may be expressed as an oligosaccharide branch of the CD44 glycoprotein, as well as a self-contained glycosphingolipid. It is also known that increased sialylation of glycoconjugates is a feature of malignant cells. The aim of the study was to analyse the effect of a novel thieno[2,3-b]pyridine, compound 1, in MDA-MB-231 triple-negative breast cancer cells (TNBCs) upon CD15s and CD44 expression in different cell subpopulations using flow cytometry. CD15s expression was compared between mesenchymal-like cancer stem cells (CSC, CD44+CD24−), epithelial cells without CD44 (CD44−CD24+ and CD44−CD24−), and CD44+CD24+ cells that exhibit mesenchymal and epithelial features. In addition, expression of CD44 in CD15s+CSC and CD15s−CSC was determined. Compound 1 significantly decreased the percentage of CD15s+CSC, CD15s+CD44+CD24+, and CD15s+CD44− subpopulations, as well as the expression of CD15s in CD44+CD24+ and CD44− cells, and therefore shows potential as a treatment for TNBC.


2015 ◽  
Vol 14 (9) ◽  
pp. 2316-2330 ◽  
Author(s):  
Matthew D. Dun ◽  
Robert J. Chalkley ◽  
Sam Faulkner ◽  
Sheridan Keene ◽  
Kelly A. Avery-Kiejda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document