Diverse ecophysiological adaptations of subsurface Thaumarchaeota in floodplain sediments revealed through genome-resolved metagenomics

2021 ◽  
Author(s):  
Linta Reji ◽  
Emily L. Cardarelli ◽  
Kristin Boye ◽  
John R. Bargar ◽  
Christopher A. Francis
Keyword(s):  
2021 ◽  
pp. 1-17
Author(s):  
Jef Vandenberghe ◽  
Xun Yang ◽  
Xianyan Wang ◽  
Shejiang Wang ◽  
Huayu Lu

Abstract This paper describes an assemblage of diverse floodplain facies of reworked loess (facies b, c) in a Middle Pleistocene monsoonal setting of the Hanzhong Basin, central China. The vertical and lateral sedimentary sequences show changing energy conditions. Apart from the highest energy in the channel facies (facies a), a relatively high energy floodplain environment (facies b) prevailed in waterlogged conditions, with small, laterally migrating (sub)channels. Facies b generally interfingers with aggrading horizontal sheets of overbank deposits in alluvial pools and swamps in a floodplain with much lower energy (facies c), in which phases of stability (soil formation) occasionally interrupted overbank deposition. Reworked loess forms the main part of the floodplain deposits. The paleosols are considered to have been formed under low hydrodynamic conditions in an interglacial environment. These interglacial conditions follow the commonly assumed glacial conditions of channel facies a. The sedimentary successions in the floodplain show a recurrent composition and cyclicity between wet and dry floodplain sedimentation terminated by stability with soil formation. The cyclic rhythm of stacked high- and low-energy floodplain sediments is attributed to varied intensity of different hydrodynamic flooding events that may have been due to changing monsoonal rainfall or simple intrinsic fluvial behavior.


Boreas ◽  
2013 ◽  
Vol 43 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Anna K. Sim ◽  
Kristina J. Thomsen ◽  
Andrew S. Murray ◽  
Geraldine Jacobsen ◽  
Russell Drysdale ◽  
...  

2012 ◽  
Vol 9 (11) ◽  
pp. 4263-4278 ◽  
Author(s):  
N. Welti ◽  
E. Bondar-Kunze ◽  
M. Mair ◽  
P. Bonin ◽  
W. Wanek ◽  
...  

Abstract. Floodplain restoration changes the nitrate delivery pattern and dissolved organic matter pool in backwaters, though the effects these changes have are not yet well known. We performed two mesocosm experiments on floodplain sediments to quantify the nitrate metabolism in two types of floodplains. Rates of denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anammox were measured using 15N-NO3 tracer additions in mesocosms of undisturbed floodplain sediments originating from (1) restored and (2) disconnected sites in the Alluvial Zone National Park on the Danube River downstream of Vienna, Austria. DNRA rates were an order of magnitude lower than denitrification and neither rate was affected by changes in nitrate delivery pattern or organic matter quality. Anammox was not detected at any of the sites. Denitrification was out-competed by assimilation, which was estimated to use up to 70% of the available nitrate. Overall, denitrification was higher in the restored sites, with mean rates of 5.7 ± 2.8 mmol N m−2 h−1 compared to the disconnected site (0.6 ± 0.5 mmol N m−2 h−1). In addition, ratios of N2O : N2 were lower in the restored site indicating a more complete denitrification. Nitrate addition had neither an effect on denitrification, nor on the N2O : N2 ratio. However, DOM (dissolved organic matter) quality significantly changed the N2O : N2 ratio in both sites. Addition of riverine-derived organic matter lowered the N2O : N2 ratio in the disconnected site, whereas addition of floodplain-derived organic matter increased the N2O : N2 ratio in the restored site. These results demonstrate that increasing floodplains hydrological connection to the main river channel increases nitrogen retention and decreases nitrous oxide emissions.


Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Mike Barbetti ◽  
Trevor Bird ◽  
George Dolezal ◽  
Gillian Taylor ◽  
Roger Francey ◽  
...  

Dendrochronological studies are being carried out on two conifer species in the Stanley River area of western Tasmania. The chronology for Huon pine (Lagarostrobos franklinii), with living trees up to 1400 yr old, extends back to 571 bc. Living celery-top pine (Phyllocladus aspleniifolius) trees are up to 500 yr old. Apart from living or recently felled trees, sections have been taken from 350 subfossil logs preserved in floodplain sediments. They range in age from >38 ka to modern, with good coverage for the periods 9–3.5 ka and from 2.5 ka to the present. We report here on 14C measurements of decadal samples from three early Holocene logs, between 10 and 9 ka bp, providing short (ca. 300-yr) records of atmospheric 14C variations when plotted against ring numbers. The southern hemisphere data from Tasmania can be compared and wiggle-matched with published 14C calibration curves from German oak and pine. One set of measurements covers the period, ca. 9280–8990 cal bp, overlapping the link between the Hohenheim “Main 9” and middle Holocene master oak chronologies. The other sets of measurements from Tasmania coincide; they span the period, ca. 9840–9480 cal bp, overlapping the end of the German Preboreal pine and the beginning of the oak chronologies. Our measurements confirm that this part of the calibration curve is a gently sloping 14C-age plateau (ca. 8900–8700 bp, between 10,000 and 9500 cal bp), and suggest interhemispheric 14C differences close to zero.


2011 ◽  
Vol 77 (17) ◽  
pp. 6036-6042 ◽  
Author(s):  
Aaron J. Coby ◽  
Flynn Picardal ◽  
Evgenya Shelobolina ◽  
Huifang Xu ◽  
Eric E. Roden

ABSTRACTSome nitrate- and Fe(III)-reducing microorganisms are capable of oxidizing Fe(II) with nitrate as the electron acceptor. This enzymatic pathway may facilitate the development of anaerobic microbial communities that take advantage of the energy available during Fe-N redox oscillations. We examined this phenomenon in synthetic Fe(III) oxide (nanocrystalline goethite) suspensions inoculated with microflora from freshwater river floodplain sediments. Nitrate and acetate were added at alternate intervals in order to induce repeated cycles of microbial Fe(III) reduction and nitrate-dependent Fe(II) oxidation. Addition of nitrate to reduced, acetate-depleted suspensions resulted in rapid Fe(II) oxidation and accumulation of ammonium. High-resolution transmission electron microscopic analysis of material from Fe redox cycling reactors showed amorphous coatings on the goethite nanocrystals that were not observed in reactors operated under strictly nitrate- or Fe(III)-reducing conditions. Microbial communities associated with N and Fe redox metabolism were assessed using a combination of most-probable-number enumerations and 16S rRNA gene analysis. The nitrate-reducing and Fe(III)-reducing cultures were dominated by denitrifyingBetaproteobacteria(e.g.,Dechloromonas) and Fe(III)-reducingDeltaproteobacteria(Geobacter), respectively; these same taxa were dominant in the Fe cycling cultures. The combined chemical and microbiological data suggest that bothGeobacterand variousBetaproteobacteriaparticipated in nitrate-dependent Fe(II) oxidation in the cycling cultures. Microbially driven Fe-N redox cycling may have important consequences for both the fate of N and the abundance and reactivity of Fe(III) oxides in sediments.


1997 ◽  
Vol 18 (5) ◽  
pp. 424-439 ◽  
Author(s):  
Scott A. Lecce ◽  
Robert T. Pavlowsky
Keyword(s):  

2015 ◽  
Vol 32 (10) ◽  
pp. 924-933 ◽  
Author(s):  
Krista A. N. Desrochers ◽  
Krista M. A. Paulson ◽  
Carol J. Ptacek ◽  
David W. Blowes ◽  
W. Douglas Gould

Sign in / Sign up

Export Citation Format

Share Document