scholarly journals Chronic mild stress-induced protein dysregulations correlated with susceptibility and resiliency to depression or anxiety revealed by quantitative proteomics of the rat prefrontal cortex

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Liao ◽  
Yanchen Liu ◽  
Lixiang Wang ◽  
Xiao Cai ◽  
Hong Xie ◽  
...  

AbstractChronic stress is a significant risk factor for depression as well as anxiety disorders. Yet, the stress-induced specific and common molecular dysregulations of these disorders have not been fully understood. Previously, we constructed a chronic mild stress (CMS) rat model to separate and obtain depression-susceptible, anxiety-susceptible, and insusceptible groups. In this study, the prefrontal cortical proteomes of the three stressed groups were comparatively profiled utilizing isobaric tags for relative and absolute quantitation (iTRAQ)-coupled tandem mass spectrometry approach. A total of 212 protein dysregulations were identified, potentially correlating to susceptibility or resilience to CMS-induced depression or anxiety, and thus might serve as potential protein targets for further investigation. In addition, independent analysis by parallel reaction monitoring identified changes in Gfap, Rhog, Gnai2, Ppp1r1b, and Uqcrh; Tubb6, Urod, Cul1, Spred1, and Gpcpd1; Acadl, Ppp1r1a, Grm2, Mtor, Lsm8, Cplx2, and Tsta3 that were distinctly correlated to depression-susceptible, anxiety-susceptible, or insusceptible groups, respectively. This suggested that identical CMS had different effects on the protein regulation system of the rat prefrontal cortex. Collectively, the present proteomics study of the prefrontal cortex established a significant molecular basis and offered new insights into the specificity and commonality of pathophysiologic mechanisms underlying susceptibility and resiliency to stress-induced depression or anxiety.

2021 ◽  
Vol 14 ◽  
Author(s):  
Weibo Gong ◽  
Wei Liao ◽  
Chui Fang ◽  
Yanchen Liu ◽  
Hong Xie ◽  
...  

Chronic stress as a known risk factor leads to hyperactivity of the hypothalamus-pituitary-adrenal (HPA) axis in both depression and anxiety. However, the stress-induced dysfunction of the HPA axis in these disorders especially the common and unique molecular dysregulations have not been well-explored. Previously, we utilized a chronic mild stress (CMS) paradigm to segregate and gain depression-susceptible, anxiety-susceptible, and insusceptible groups. In this study, we continue to examine the possible protein expression alterations of the hypothalamus as the center of the HPA axis in these three groups by using a proteomic approach. Though isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative analysis, a total of 593 dysregulated proteins were identified. These were potentially associated with vulnerability and adaptability of CMS-caused depression or anxiety and therefore might become novel investigative protein targets. Further independent analysis using parallel reaction monitoring (PRM) indicated that 5, 7, and 21 dysregulated proteins were specifically associated with depression-susceptible, anxiety-susceptible, and insusceptible groups, respectively, suggesting that the same CMS differently affected the regulation system of the rat hypothalamic proteome. In summary, the current proteomic research on the hypothalamus provided insights into the specific and common molecular basis for the HPA dysfunction mechanisms that underlie resiliency and vulnerability to stress-induced depression or anxiety.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fenfang Tian ◽  
Dan Liu ◽  
Jin Chen ◽  
Wei Liao ◽  
Weibo Gong ◽  
...  

Chronic stress as one of the most significant risk factor can trigger overactivity of hypothalamic-pituitary-adrenal (HPA) axis in depression as well as anxiety. Yet, the shared and unique neurobiological underpinnings underlying the pituitary abnormality in these two disorders have not been made clear. We previously have established depression-susceptible, anxiety-susceptible and insusceptible groups using a valid chronic mild stress (CMS) model. In this work, the possible protein expression changes in the rat pituitary of these three groups were continuously investigated through the use of the comparative quantitative proteomics and bioinformatics approaches. The pituitary-proteome analysis identified totally 197 differential proteins as a CMS response. These deregulated proteins were involved in diverse biological functions and significant pathways potentially connected with the three different behavioral phenotypes, likely serving as new investigative protein targets. Afterwards, parallel reaction monitoring-based independent analysis found out that expression alterations in Oxct1, Sec24c, Ppp1cb, Dock1, and Coq3; Lama1, Glb1, Gapdh, Sccpdh, and Renbp; Sephs1, Nup188, Spp1, Prodh1, and Srm were specifically linked to depression-susceptible, anxiety-susceptible and insusceptible groups, respectively, suggesting that the same CMS had different impacts on the pituitary protein regulatory system. Collectively, the current proteomics research elucidated an important molecular basis and furnished new valuable insights into neurochemical commonalities and specificities of the pituitary dysfunctional mechanisms in HPA axis underlying vulnerability and resistance to stress-induced anxiety or depression.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiao Cai ◽  
Chen Yang ◽  
Jin Chen ◽  
Weibo Gong ◽  
Faping Yi ◽  
...  

Chronic stress is a key factor for the onset of anxiety and depression disorders. However, the stress-induced common and unique molecular basis of the two psychiatric disorders is not fully known and still needs to be explored. Previously, we employed a chronic mild stress (CMS) procedure to induce a rat model including depression-susceptible (Dep-Sus), anxiety-susceptible (Anx-Sus), and insusceptible (Insus) cohorts. In this work, we continuously analyze the striatal proteomes of the three stressed cohorts by the use of comparative proteomics and bioinformatics approaches. Through isobaric tags for relative and absolute quantitation (iTRAQ)-based analysis, 386 abnormally expressed proteins in total were identified. These deregulated proteins are involved in various biological functions and significant pathways that are potentially connected with resistance and susceptibility to CMS-caused anxious- or depressive-like behaviors and, hence, could act as suggestive protein targets. A further parallel reaction monitoring-based independent investigation shows that alterations in Pak5, Dgkg, Scn4b, Rb1cc1, and Acin1; Ggps1, Fntb, Nudt19, Ufd1, and Ndufab1; and Dnajb12, Hbb2, Ap2s1, Ip6k1, and Stk4 were specifically connected with Dep-Sus, Anx-Sus, or Insus groups, respectively, potentially indicating that identical CMS treatment results in the different changes in the striatal protein regulations. Overall, our current proteomics study of the striatum provides an important molecular foundation and comprehensive insights into common and specific deregulations correlated with pathophysiological mechanisms that underlie resistance and susceptibility to chronic stress–induced anxiety or depression.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Min Tang ◽  
Haojun Huang ◽  
Shuiming Li ◽  
Mi Zhou ◽  
Zhao Liu ◽  
...  

Abstract Chronic stressful occurrences are documented as a vital cause of both depression and anxiety disorders. However, the stress-induced molecular mechanisms underlying the common and distinct pathophysiology of these disorders remains largely unclear. We utilized a chronic mild stress (CMS) rat model to differentiate and subgroup depression-susceptible, anxiety-susceptible, and insusceptible rats. The hippocampus was analyzed for differential proteomes by combining mass spectrometry and the isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique. Out of 2593 quantified proteins, 367 were aberrantly expressed. These hippocampal protein candidates might be associated with susceptibility to stress-induced depression or anxiety and stress resilience. They provide the potential protein systems involved in various metabolic pathways as novel investigative protein targets. Further, independent immunoblot analysis identified changes in Por, Idh2 and Esd; Glo1, G6pdx, Aldh2, and Dld; Dlat, Ogdhl, Anxal, Tpp2, and Sdha that were specifically associated to depression-susceptible, anxiety-susceptible, or insusceptible groups respectively, suggesting that identical CMS differently impacted the mitochondrial and metabolic processes in the hippocampus. Collectively, the observed alterations to protein abundance profiles of the hippocampus provided significant and novel insights into the stress regulation mechanism in a CMS rat model. This might serve as the molecular basis for further studies that would contributed to a better understanding of the similarities and differences in pathophysiologic mechanisms underlying stress-induced depression or anxiety, and stress resiliency.


2019 ◽  
Vol 33 (6) ◽  
pp. 748-756 ◽  
Author(s):  
Mariusz Papp ◽  
Piotr Gruca ◽  
Magdalena Lason ◽  
Monika Niemczyk ◽  
Paul Willner

Aims: The Wistar-Kyoto rat has been validated as an animal model of treatment-resistant depression. Here we investigated a role of dopamine D2 and D3 receptors in the ventro-medial prefrontal cortex in the mechanism of action of deep brain stimulation in Wistar-Kyoto rats and venlafaxine in Wistar rats. Methods: Wistar or Wistar-Kyoto rats were exposed chronically to chronic mild stress. Wistar rats were treated chronically with venlafaxine (10 mg/kg) beginning after two weeks of chronic mild stress; Wistar-Kyoto rats received two sessions of deep brain stimulation before behavioural tests. L-742,626 (1 µg), a D2 receptor agonist, or 7-OH DPAT (3 µg), a D3 receptor antagonist, were infused into the ventro-medial prefrontal cortex immediately following the exposure trial in the Novel Object Recognition Test, and discrimination between novel and familiar object was tested one hour later. Results: Chronic mild stress decreased sucrose intake and impaired memory consolidation; these effects were reversed by venlafaxine in Wistar rats and deep brain stimulation in Wistar-Kyoto rats. In control animals, L-742,626 and 7-OH DPAT also impaired memory consolidation. In Wistar rats, venlafaxine reversed the effect of L-742,626 in controls, but not in the chronic mild stress group, and venlafaxine did not reverse the effect of 7-OH DPAT in either group. In Wistar-Kyoto rats, deep brain stimulation reversed the effect of both L-742,626 and 7-OH DPAT in both control and chronic mild stress groups. Conclusions: We conclude that the action of venlafaxine to reverse the impairment of memory consolidation caused by chronic mild stress in Wistar rats involves D2 receptors in the ventro-medial prefrontal cortex; but the effect of deep brain stimulation to reverse the same effect in Wistar-Kyoto rats does not.


2010 ◽  
Vol 108 (5) ◽  
pp. 1041-1051 ◽  
Author(s):  
Alexandre C. d'Audiffret ◽  
Stephanie J. Frisbee ◽  
Phoebe A. Stapleton ◽  
Adam G. Goodwill ◽  
Elsa Isingrini ◽  
...  

As chronic stress and depression have become recognized as significant risk factors for peripheral vascular disease in patients with no prior history of vasculopathy, we interrogated this relationship utilizing an established mouse model of chronic stress/depressive symptoms from behavioral research. Male mice were exposed to 8 wk of unpredictable chronic mild stress (UCMS; e.g., wet bedding, predator sound/smell, random disruption of light/dark cycle), with indexes of depressive behavior (coat status, grooming, and mobility) becoming exacerbated vs. controls. In vascular rings, constrictor (phenylephrine) and endothelium-independent dilator (sodium nitroprusside) responses were not different between groups, although endothelium-dependent dilation (methacholine) was attenuated with UCMS. Nitric oxide synthase (NOS) inhibition was without effect in UCMS but nearly abolished reactivity in controls, while cyclooxygenase inhibition blunted dilation in both. Combined blockade abolished reactivity in controls, although a significant dilation remained in UCMS that was abolished by catalase. Arterial NO production was attenuated by UCMS, although H2O2 production was increased. UCMS mice demonstrated an increased, although variable, insulin resistance and inflammation. However, while UCMS-induced vascular impairments were consistent, the predictive power of aggregate plasma levels of insulin, TNF-α, IL-1β, and C-reactive peptide were limited. However, when separated into tertiles with regard to vascular outcomes, insulin resistance and hypertension were predictive of the most severe vascular impairments. Taken together, these data suggest that aggregate insulin resistance, inflammation, and hypertension in UCMS mice are not robust predictors of vascular dysfunction, suggesting that unidentified mechanisms may be superior predictors of poor vascular outcomes in this model.


Sign in / Sign up

Export Citation Format

Share Document