Excellent outcomes of allogeneic transplantation from peripheral blood of HLA-matched related donors for adult sickle cell disease with ATLG and posttransplant cyclophosphamide-containing regimen: an update work

2020 ◽  
Vol 55 (8) ◽  
pp. 1647-1651 ◽  
Author(s):  
Hakan Ozdogu ◽  
Can Boga ◽  
Mahmut Yeral ◽  
Ilknur Kozanoglu ◽  
Cigdem Gereklioglu ◽  
...  
Data in Brief ◽  
2017 ◽  
Vol 10 ◽  
pp. 192-197 ◽  
Author(s):  
Iakovos Armenis ◽  
Vassiliki Kalotychou ◽  
Revekka Tzanetea ◽  
Panagoula Kollia ◽  
Zoi Kontogeorgiou ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1509-1509
Author(s):  
Tatiana Ammosova ◽  
Sharroya Charles ◽  
Jamie Rotimi ◽  
Altreisha Foster ◽  
Sharmin Diaz ◽  
...  

Abstract Abstract 1509 Poster Board I-532 Background The hypoxic response is an important component of the body 's reaction to impaired tissue oxygenation associated with the anemia and vasoocclusive episodes of sickle cell disease (SCD). It has been reported that HIV infection progresses relatively slowly in patients with SCD (Am J Hematol 1998; 59:199-207). We recently showed that HIV-1 transcription and replication is significantly reduced in cells cultured at 3% versus 21% oxygen (J Cell Physiol 2009; in press). Our previous studies indicated that protein phosphatase-1 (PP1) interacts with HIV-1 transcriptional activator, Tat, and thereby participates in the regulation of HIV-1 transcription. Sickle cell patients are in chronically hypoxic state and we hypothesized that HIV-1 replication in their peripheral blood mononuclear cells (PBMCs) would be slower then in controls. Methods We isolated PBMCs from patients with SCD and from normal subjects, activated the cells with phytohemagglutinin and IL-2 for 24 h, and infected with pseudotyped HIV-1 virus expressing Luciferase. The infected cells were cultured at 3% of oxygen for 72 h. Results We show here that PP1 association with cellular regulatory subunits is modified and that PP1 activity is significantly reduced by 20-40% in different cell lines at 3% versus 21% oxygen. One round of replication of pseudotyped HIV-1 Luciferase virus normalized to the number of the cells in culture was significantly reduced in SCD PBMCs comparing to normal controls. Conclusions Our results provide a direct evidence of that HIV-1 replication may be slower in SCD-derived PBMCs. In future, we will analyze PP1 activity and the association of PP1 with regulatory subunits in SCD PBMCs. Understanding of how oxygen status influences HIV-1 replication might open new possibilities for treatment of hidden HIV-1 reservoirs that harbor non-replicating HIV-1 virus. Acknowledgments This work was supported by NHLBI Research Grant 2 R25 HL003679-08 from the National Institutes of Health and The Office of Research on Minority Health. Disclosures No relevant conflicts of interest to declare.


Haematologica ◽  
2020 ◽  
Vol 105 (10) ◽  
pp. e497 ◽  
Author(s):  
Naoya Uchida ◽  
Alexis Leonard ◽  
David Stroncek ◽  
Sandhya R. Panch ◽  
Kamille West ◽  
...  

Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1451-1459 ◽  
Author(s):  
Marie-José Blouin ◽  
Monique E. De Paepe ◽  
Marie Trudel

Abstract We investigated the mechanisms of sickle cell disease (SCD) hematopoietic/erythropoietic defects using bone marrow, spleen, and/or peripheral blood from the transgenic SAD mouse model, which closely reproduces the biochemical and physiological disorders observed in human SCD. First, the erythropoietic lineage late precursors (polychromatophilic normoblasts to the intramedullary reticulocytes) of SAD mouse bone marrow were significantly altered morphologically. These anomalies resulted from high levels of hemoglobin polymers and were associated with increased cell fragmentation occurring during medullary endothelial migration of reticulocytes. Secondly, analysis of bone marrow erythropoiesis in earlier stages showed a marked depletion in SAD erythroid burst-forming units (BFU-E; of ∼42%) and erythroid colony-forming units (CFU-E; of ∼23%) progenitors, despite a significant increase in their proliferation, suggesting a compensatory mechanism. In contrast to the bone marrow progenitor depletion, we observed (1) a high mobilization/relocation of BFU-E early progenitors (∼4-fold increase) in peripheral blood of SAD mice as well as of colony-forming units–granulocyte-macrophage (CFU-GM) and (2) a 7-fold increase of SAD CFU-E in the spleen. Third, and most importantly, SAD bone marrow multipotent cells (spleen colony-forming units [CFU-S], granulocyte-erythroid-macrophage-megakaryocyte colony-forming units [CFU-GEMM], and Sca+Lin−) were highly mobilized to the peripheral blood (∼4-fold increase), suggesting that peripheral multipotent cells could serve as proliferative and autologous vehicles for gene therapy. Therefore, we conclude the following. (1) The abnormal differentiation and morphology of late nucleated erythroid precursors result in an ineffective sickle erythropoiesis and likely contribute to the pathophysiology of sickle cell disorders; this suggests that transfer of normal or modified SCD bone marrow cells may have a selective advantage in vivo. (2) A hematopoietic compensatory mechanism exists in SAD/SCD pathology and consists of mobilization of multipotent cells from the bone marrow to the peripheral blood and their subsequent uptake into the spleen, an extramedullary hematopoietic site for immediate differentiation. Altogether, these results corroborate the strong potential effectiveness of both autologous and allogeneic bone marrow transplantation for SCD hematopoietic therapy.


2017 ◽  
Vol Volume 10 ◽  
pp. 1635-1644 ◽  
Author(s):  
Ravi Bhatt ◽  
Sarah Martin ◽  
Subhadra Evans ◽  
Kirsten Lung ◽  
Thomas Coates ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document