scholarly journals SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK

Author(s):  
Yang Yang ◽  
Yongjian Wu ◽  
Xiaojun Meng ◽  
Zhiying Wang ◽  
Muhammad Younis ◽  
...  
1991 ◽  
Vol 261 (4) ◽  
pp. L307-L314 ◽  
Author(s):  
L. Nici ◽  
R. Dowin ◽  
M. Gilmore-Hebert ◽  
J. D. Jamieson ◽  
D. H. Ingbar

A major function of the alveolar epithelium is to keep the airspace free of fluid and preserve gas exchange. Since Na-K-ATPase is believed to be important in this process, we hypothesized that Na-K-ATPase in the rat lung would increase in response to acute lung injury with pulmonary edema. Na-K-ATPase localization, mRNA expression, and protein levels were determined in hyperoxic lung injury. Adult male rats were exposed to greater than 97% oxygen for 60 h followed by recovery in room air. At 60 h of hyperoxia, the wet-to-dry lung weights increased, consistent with edema. Within the alveolar capillary region, the sodium pump remained localized to the type II cell basolateral membrane by immunocytochemistry. By Northern blot analysis, the level of total lung mRNA expression of the alpha 1- and beta-subunits of Na-K-ATPase increased three- to fourfold during hyperoxia compared with unexposed rats. Total lung Na-K-ATPase membrane protein, visualized with a Western blot technique, appeared to increase by 24 h of hyperoxic insult when compared with levels in unexposed animals. The increase in sodium pump gene expression that occurs during hyperoxic insult, followed by an increase in sodium pump membrane protein, suggests that type II cells increase their Na-K-ATPase synthesis as an early response to pulmonary edema and/or hyperoxia.


Author(s):  
V. Pelliccia ◽  
C. Pizzanelli ◽  
S. Pini ◽  
P. Malacarne ◽  
U. Bonuccelli

Author(s):  
Tomoo Kawada ◽  
Michio Arakawa ◽  
Kenjiro Kambara ◽  
Takashi Segawa ◽  
Fumio Ando ◽  
...  

We know that alloxan causes increased-permeability pulmonary edema and that alloxan generates oxygen radicals (H2O2, O2−, ·OH) in blood. Therefore, we hypothesize that alloxan-generated oxygen radicals damage pulmonary capillary endothelial cells, and, possibly, alveolar epithelial cells as well. We examined whether oxygen radical scavengers, such as catalase or dimethylsulfoxide (DMSO), protected against alloxaninduced pulmonary edema.Five dogs in each following group were anesthetized: control group: physiological saline (20ml/kg/h); alloxan group: physiological saline + alloxan (75mg/kg) bolus injection at the beginning of the experiment; catalase group: physiological saline + catalase (150,000u/kg) bolus injection before injection of alloxan; DMSO group: physiological saline + DMSO (0.4mg/kg) bolus injection before alloxan. All dogs had 30-min baseline period and 3-h intervention period. Hemodynamics and circulating substances were measured at the specific points of time. At the end of intervention period, the dogs were killed and had the lungs removed for electron microscopic study and lung water measurement with direct destructive method.


2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


2005 ◽  
Vol 38 (18) ◽  
pp. 55
Author(s):  
KATE JOHNSON
Keyword(s):  

2007 ◽  
Vol 6 (1) ◽  
pp. 105-105
Author(s):  
I VOGIATZIS ◽  
V SACHPEKIDIS ◽  
I VOGIATZIS ◽  
E KAMBITSI ◽  
V TSAGARIS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document