scholarly journals C9-ALS/FTD-linked proline–arginine dipeptide repeat protein associates with paraspeckle components and increases paraspeckle formation

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Hiroaki Suzuki ◽  
Yoshio Shibagaki ◽  
Seisuke Hattori ◽  
Masaaki Matsuoka

Abstract A GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene has been identified as the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. The repeat expansion undergoes unconventional translation to produce five dipeptide repeat proteins (DPRs). Although DPRs are thought to be neurotoxic, the molecular mechanism underlying the DPR-caused neurotoxicity has not been fully elucidated. The current study shows that poly-proline-arginine (poly-PR), the most toxic DPR in vitro, binds to and up-regulates nuclear paraspeckle assembly transcript 1 (NEAT1) that plays an essential role as a scaffold non-coding RNA during the paraspeckle formation. The CRISPR-assisted up-regulation of endogenous NEAT1 causes neurotoxicity. We also show that the poly-PR modulates the function of several paraspeckle-localizing heterogeneous nuclear ribonucleoproteins. Furthermore, dysregulated expression of TAR DNA-binding protein 43 (TDP-43) up-regulates NEAT1 expression and induces neurotoxicity. These results suggest that the increase in the paraspeckle formation may be involved in the poly-PR- and TDP-43-mediated neurotoxicity.

2019 ◽  
Author(s):  
Lindsey R. Hayes ◽  
Lauren Duan ◽  
Kelly Bowen ◽  
Petr Kalab ◽  
Jeffrey D. Rothstein

AbstractDisruption of nucleocytoplasmic transport (NCT), including mislocalization of the importin β cargo, TDP-43, is a hallmark of amyotrophic lateral sclerosis (ALS), including ALS caused by a hexanucleotide repeat expansion in C9orf72. However, the mechanism(s) remain unclear. Importin β and its cargo adaptors have been shown to co-precipitate with the C9orf72-arginine-containing dipeptide repeat proteins (R-DPRs), poly-glycine arginine (GR) and poly-proline arginine (PR), and are protective in genetic modifier screens. Here, we show that R-DPRs interact with importin β, disrupt its cargo loading, and inhibit nuclear import in permeabilized mouse neurons and HeLa cells, in a manner that can be rescued by RNA. Although R-DPRs induce widespread protein aggregation in this in vitro system, transport disruption is not due to NCT protein sequestration, nor blockade of the phenylalanine-glycine (FG)-rich nuclear pore complex. Our results support a model in which R-DPRs interfere with nuclear transport receptors in the vicinity of the nuclear envelope.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Magda L Atilano ◽  
Sebastian Grönke ◽  
Teresa Niccoli ◽  
Liam Kempthorne ◽  
Oliver Hahn ◽  
...  

G4C2 repeat expansions within the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The repeats undergo repeat-associated non-ATG translation to generate toxic dipeptide repeat proteins. Here, we show that insulin/IGF signalling is reduced in fly models of C9orf72 repeat expansion using RNA sequencing of adult brain. We further demonstrate that activation of insulin/IGF signalling can mitigate multiple neurodegenerative phenotypes in flies expressing either expanded G4C2 repeats or the toxic dipeptide repeat protein poly-GR. Levels of poly-GR are reduced when components of the insulin/IGF signalling pathway are genetically activated in the diseased flies, suggesting a mechanism of rescue. Modulating insulin signalling in mammalian cells also lowers poly-GR levels. Remarkably, systemic injection of insulin improves the survival of flies expressing G4C2 repeats. Overall, our data suggest that modulation of insulin/IGF signalling could be an effective therapeutic approach against C9orf72 ALS/FTD.


2020 ◽  
Vol 4 (3) ◽  
pp. 293-305
Author(s):  
Hana M. Odeh ◽  
James Shorter

A hexanucleotide repeat expansion GGGGCC (G4C2) within chromosome 9 open reading frame 72 (C9orf72) is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). This seminal realization has rapidly focused our attention to the non-canonical translation (RAN translation) of the repeat expansion, which yields dipeptide-repeat protein products (DPRs). The mechanisms by which DPRs might contribute to C9-ALS/FTD are widely studied. Arginine-rich DPRs (R-DPRs) are the most toxic of the five different DPRs produced in neurons, but how do R-DPRs promote C9-ALS/FTD pathogenesis? Proteomic analyses have uncovered potential pathways to explore. For example, the vast majority of the R-DPR interactome is comprised of disease-linked RNA-binding proteins (RBPs) with low-complexity domains (LCDs), strongly suggesting a link between R-DPRs and aberrations in liquid–liquid phase separation (LLPS). In this review, we showcase several potential mechanisms by which R-DPRs disrupt various phase-separated compartments to elicit deleterious neurodegeneration. We also discuss potential therapeutic strategies to counter R-DPR toxicity in C9-ALS/FTD.


Author(s):  
Lieselot Dedeene ◽  
Evelien Van Schoor ◽  
Rik Vandenberghe ◽  
Philip Van Damme ◽  
Koen Poesen ◽  
...  

AbstractMotor-, behavior- and/or cognition-related symptoms are key hallmarks in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with TDP-43 pathology (FTLD-TDP), respectively. It has been reported that these patients also experience sleep disturbances, which might implicate a disturbed circadian rhythm of the sleep/wake cycle. It remains unknown, however, whether cells involved in the circadian sleep/wake cycle are affected by ALS- and FTLD-related neuropathological changes including phosphorylated TDP-43 (pTDP-43) aggregates and dipeptide repeat protein (DPR) inclusions resulting from the C9orf72 hexanucleotide repeat expansion. Immunohistochemistry for DPR and pTDP-43 pathology was performed in post-mortem hypothalamus and pineal gland tissue of patients with ALS and/or FTLD-TDP with and without the C9orf72 repeat expansion and healthy controls. Circadian sleep/wake-associated cells, including pinealocytes and hypothalamic neurons related to the suprachiasmatic nucleus (SCN), were microscopically assessed. We observed numerous DPR inclusions (poly(GA), poly(GP), poly(GR) and poly(PR)) in the pinealocytes and few poly(GA) inclusions in the SCN-related neurons in C9orf72-related ALS and/or FTLD-TDP cases. These circadian sleep/wake-associated cells, however, were devoid of pTDP-43 pathology both in C9orf72- and nonC9orf72-related ALS and/or FTLD-TDP cases. Our neuropathological findings show that pinealocytes and, to a lesser extent, SCN-related neurons are affected by DPR pathology. This may reflect an involvement of these cells in sleep/wake disturbances observed in ALS and/or FTLD-TDP patients.


2021 ◽  
Author(s):  
Carley Snoznik ◽  
Valentina Medvedeva ◽  
Jelena Mojsilovic-Petrovic ◽  
Paige Rudich ◽  
James Oosten ◽  
...  

AbstractA hexanucleotide repeat expansion in the C9orf72 gene is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Unconventional translation of the C9orf72 repeat produces dipeptide repeat proteins (DPRs). Previously, we showed that the DPRs (PR)50 and (GR)50 are highly toxic when expressed in C. elegans and this toxicity depends on nuclear localization of the DPR. In an unbiased genome-wide RNAi screen for suppressors of (PR)50 toxicity, we identified 12 genes that consistently suppressed either the developmental arrest and/or paralysis phenotype evoked by (PR)50 expression. All of these genes have vertebrate homologs and 7/12 contain predicted nuclear localization signals. One of these genes was spop-1, the C. elegans homolog of SPOP, a nuclear localized E3 ubiquitin ligase adaptor only found in metazoans. SPOP is also required for (GR)50 toxicity and functions in a genetic pathway that includes cul-3, which is the canonical E3 ligase partner for SPOP. Genetic or pharmacological inhibition of SPOP in mammalian primary spinal cord motor neurons suppressed DPR toxicity without affecting DPR expression levels. Finally, we find that genetic inhibition of bet-1, the C. elegans homolog of the known SPOP ubiquitination targets BRD2/3/4, suppresses the protective effect of SPOP mutations. Together, these data suggest a model in which SPOP promotes the DPR-dependent ubiquitination and degradation of BRD proteins. We speculate the pharmacological manipulation of this pathway, which is currently underway for multiple cancer subtypes, could also represent a novel entry point for therapeutic intervention to treat C9 FTD/ALS.Significance statementThe G4C2 repeat expansion in the C9orf72 gene is a major cause of Fronto-Temporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Unusual translation of the repeat sequence produces two highly toxic dipeptide repeat proteins, PRX and GRX, which accumulate in the brain tissue of individuals with these diseases. Here, we show that PR and GR toxicity in both C. elegans and mammalian neurons depends on the E3 ubiquitin ligase adaptor SPOP. SPOP acts through the bromodomain protein BET-1 to mediate dipeptide toxicity. SPOP inhibitors, which are currently being developed to treat SPOP-dependent renal cancer, also protect neurons against DPR toxicity. Our findings identify a highly conserved and ‘druggable’ pathway that may represent a new strategy for treating these currently incurable diseases.


Sign in / Sign up

Export Citation Format

Share Document