hexanucleotide repeat expansion
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 44)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
pp. practneurol-2021-002989
Author(s):  
Thanuja Dharmadasa ◽  
Jakub Scaber ◽  
Evan Edmond ◽  
Rachael Marsden ◽  
Alexander Thompson ◽  
...  

A minority (10%–15%) of cases of amyotrophic lateral sclerosis (ALS), the most common form of motor neurone disease (MND), are currently attributable to pathological variants in a single identifiable gene. With the emergence of new therapies targeting specific genetic subtypes of ALS, there is an increasing role for routine genetic testing for all those with a definite diagnosis. However, potential harm to both affected individuals and particularly to asymptomatic relatives can arise from the indiscriminate use of genetic screening, not least because of uncertainties around incomplete penetrance and variants of unknown significance. The most common hereditary cause of ALS, an intronic hexanucleotide repeat expansion in C9ORF72, may be associated with frontotemporal dementia independently within the same pedigree. The boundary of what constitutes a possible family history of MND has therefore extended to include dementia and associated psychiatric presentations. Notwithstanding the important role of clinical genetics specialists, all neurologists need a basic understanding of the current place of genetic testing in MND, which holds lessons for other neurological disorders.


2021 ◽  
Author(s):  
Maria Mytiliniou ◽  
Joeri A.J. Wondergem ◽  
Marleen Feliksik ◽  
Thomas Schmidt ◽  
Doris Heinrich

The G4C2 hexanucleotide repeat expansion in the c9orf72 locus is one among a plethora of mutations associated with amyotrophic lateral sclerosis. It accounts for the majority of disease cases. The exact processes underlying the pathology of this mutation remain elusive, yet recent evidence suggests a mechanism that disrupts axonal trafficking. Here, we used a neuronal cell line with and without the G4C2 repeats, and implemented time-resolved local mean squared displacement analysis to characterize the motion of lysosomes inside neurites. Neurites were either aligned along chemically patterned lines, or oriented randomly on the substrate. We confirmed that in the presence of the G4C2 repeats, lysosome motion was affected. Lysosomes had a smaller reach exhibited lower velocity, especially inside aligned neurites. At the same time they became more active with increasing length of the G4C2 repeats when the neurites were randomly oriented. The duration of diffusive and super-diffusive lysosome transport remained unaffected for both neurite geometries and for all lengths of the repeats, but the displacement and velocity was decreased on varying the repeat number and neurite geometry. Lastly, the ratio of anterograde/retrograde/neutral trajectories was affected disparately for the two neurite geometries. Our observations support the hypothesis that impaired axonal trafficking emerges in the presence of the G4C2 hexanucleotide repeat expansion.


2021 ◽  
Vol 22 (13) ◽  
pp. 6991
Author(s):  
Isabella Zanella ◽  
Eliana Zacchi ◽  
Simone Piva ◽  
Massimiliano Filosto ◽  
Giada Beligni ◽  
...  

A cytokine storm, autoimmune features and dysfunctions of myeloid cells significantly contribute to severe coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Genetic background of the host seems to be partly responsible for severe phenotype and genes related to innate immune response seem critical host determinants. The C9orf72 gene has a role in vesicular trafficking, autophagy regulation and lysosome functions, is highly expressed in myeloid cells and is involved in immune functions, regulating the lysosomal degradation of mediators of innate immunity. A large non-coding hexanucleotide repeat expansion (HRE) in this gene is the main genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), both characterized by neuroinflammation and high systemic levels of proinflammatory cytokines, while HREs of intermediate length, although rare, are more frequent in autoimmune disorders. C9orf72 full mutation results in haploinsufficiency and intermediate HREs seem to modulate gene expression as well and impair autophagy. Herein, we sought to explore whether intermediate HREs in C9orf72 may be a risk factor for severe COVID-19. Although we found intermediate HREs in only a small portion of 240 patients with severe COVID-19 pneumonia, the magnitude of risk for requiring non-invasive or mechanical ventilation conferred by harboring intermediate repeats >10 units in at least one C9orf72 allele was more than twice respect to having shorter expansions, when adjusted for age (odds ratio (OR) 2.36; 95% confidence interval (CI) 1.04–5.37, p = 0.040). The association between intermediate repeats >10 units and more severe clinical outcome (p = 0.025) was also validated in an independent cohort of 201 SARS-CoV-2 infected patients. These data suggest that C9orf72 HREs >10 units may influence the pathogenic process driving more severe COVID-19 phenotypes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zoé Butti ◽  
Yingzhou Edward Pan ◽  
Jean Giacomotto ◽  
Shunmoogum A. Patten

AbstractThe most common genetic cause of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is a hexanucleotide repeat expansion within the C9orf72 gene. Reduced levels of C9orf72 mRNA and protein have been found in ALS/FTD patients, but the role of this protein in disease pathogenesis is still poorly understood. Here, we report the generation and characterization of a stable C9orf72 loss-of-function (LOF) model in the zebrafish. We show that reduced C9orf72 function leads to motor defects, muscle atrophy, motor neuron loss and mortality in early larval and adult stages. Analysis of the structure and function of the neuromuscular junctions (NMJs) of the larvae, reveal a marked reduction in the number of presynaptic and postsynaptic structures and an impaired release of quantal synaptic vesicles at the NMJ. Strikingly, we demonstrate a downregulation of SV2a upon C9orf72-LOF and a reduced rate of synaptic vesicle cycling. Furthermore, we show a reduced number and size of Rab3a-postive synaptic puncta at NMJs. Altogether, these results reveal a key function for C9orf72 in the control of presynaptic vesicle trafficking and release at the zebrafish larval NMJ. Our study demonstrates an important role for C9orf72 in ALS/FTD pathogenesis, where it regulates synaptic vesicle release and neuromuscular functions.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Martina Milani ◽  
Eleonora Mammarella ◽  
Simona Rossi ◽  
Chiara Miele ◽  
Serena Lattante ◽  
...  

Abstract Background An increasing number of studies evidences that amyotrophic lateral sclerosis (ALS) is characterized by extensive alterations in different cell types and in different regions besides the CNS. We previously reported the upregulation in ALS models of a gene called fibroblast-specific protein-1 or S100A4, recognized as a pro-inflammatory and profibrotic factor. Since inflammation and fibrosis are often mutual-sustaining events that contribute to establish a hostile environment for organ functions, the comprehension of the elements responsible for these interconnected pathways is crucial to disclose novel aspects involved in ALS pathology. Methods Here, we employed fibroblasts derived from ALS patients harboring the C9orf72 hexanucleotide repeat expansion and ALS patients with no mutations in known ALS-associated genes and we downregulated S100A4 using siRNA or the S100A4 transcriptional inhibitor niclosamide. Mice overexpressing human FUS were adopted to assess the effects of niclosamide in vivo on ALS pathology. Results We demonstrated that S100A4 underlies impaired autophagy and a profibrotic phenotype, which characterize ALS fibroblasts. Indeed, its inhibition reduces inflammatory, autophagic, and profibrotic pathways in ALS fibroblasts, and interferes with different markers known as pathogenic in the disease, such as mTOR, SQSTM1/p62, STAT3, α-SMA, and NF-κB. Importantly, niclosamide in vivo treatment of ALS-FUS mice reduces the expression of S100A4, α-SMA, and PDGFRβ in the spinal cord, as well as gliosis in central and peripheral nervous tissues, together with axonal impairment and displays beneficial effects on muscle atrophy, by promoting muscle regeneration and reducing fibrosis. Conclusion Our findings show that S100A4 has a role in ALS-related mechanisms, and that drugs such as niclosamide which are able to target inflammatory and fibrotic pathways could represent promising pharmacological tools for ALS.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 601
Author(s):  
Keith Mayl ◽  
Christopher E. Shaw ◽  
Youn-Bok Lee

A hexanucleotide repeat expansion mutation in the first intron of C9orf72 is the most common known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Since the discovery in 2011, numerous pathogenic mechanisms, including both loss and gain of function, have been proposed. The body of work overall suggests that toxic gain of function arising from bidirectionally transcribed repeat RNA is likely to be the primary driver of disease. In this review, we outline the key pathogenic mechanisms that have been proposed to date and discuss some of the novel therapeutic approaches currently in development.


2021 ◽  
pp. jnnp-2020-325994
Author(s):  
Flora Gossink ◽  
Annemiek Dols ◽  
Max L Stek ◽  
Philip Scheltens ◽  
Bas Nijmeijer ◽  
...  

ObjectivesThe chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansion (C9orf72RE) is the most common genetic cause of behavioural variant frontotemporal dementia (bvFTD). Since the onset of the C9orf72RE-associated disease is sometimes hard to define, we hypothesise that C9orf72RE may cause a lifelong neuropsychiatric vulnerability. The first aim of our study was to explore lifelong behavioural and personality characteristics in C9orf72RE. Second, we aimed to describe distinctive characteristics of C9orf72RE during disease course.MethodsOut of 183 patients from the Amsterdam Dementia Cohort that underwent genetic testing between 2011 and 2018, 20 C9orf72RE bvFTD patients and 23 C9orf72RE negative bvFTD patients were included. Patients and their relatives were interviewed extensively to chart their biography. Data analysis was performed through a mixed-methods approach including qualitative and quantitative analyses.ResultsEducation, type of professional career and number of intimate partners were not different between carriers and non-carriers. Carriers were more often described by their relatives as having ‘fixed behavioural patterns in daily life’ and with limited empathy already years before onset of bvFTD symptoms. In carriers, disease course was more often characterised by excessive buying and obsessive physical exercise than in non-carriers.ConclusionThis is the first study thoroughly exploring biographies of bvFTD patients with C9orf72RE, revealing that subtle personality traits may be present early in life. Our study suggests that C9orf72RE exerts a lifelong neuropsychiatric vulnerability. This may strengthen hypotheses of links between neurodevelopmental and neurodegenerative diseases. Moreover, the presence of a distinct C9orf72RE -associated syndrome within the FTD spectrum opens doors for investigation of vulnerable neuronal networks.


2021 ◽  
Vol 7 (15) ◽  
pp. eabg3013
Author(s):  
Laura Fumagalli ◽  
Florence L. Young ◽  
Steven Boeynaems ◽  
Mathias De Decker ◽  
Arpan R. Mehta ◽  
...  

A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell–derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document