scholarly journals Distinct photo-oxidation-induced cell death pathways lead to selective killing of human breast cancer cells

2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Ancély F. Dos Santos ◽  
Alex Inague ◽  
Gabriel S. Arini ◽  
Letícia F. Terra ◽  
Rosangela A. M. Wailemann ◽  
...  

AbstractLack of effective treatments for aggressive breast cancer is still a major global health problem. We have previously reported that photodynamic therapy using methylene blue as photosensitizer (MB-PDT) massively kills metastatic human breast cancer, marginally affecting healthy cells. In this study, we aimed to unveil the molecular mechanisms behind MB-PDT effectiveness and specificity towards tumor cells. Through lipidomics and biochemical approaches, we demonstrated that MB-PDT efficiency and specificity rely on polyunsaturated fatty acid-enriched membranes and on the better capacity to deal with photo-oxidative damage displayed by non-tumorigenic cells. We found out that, in tumorigenic cells, lysosome membrane permeabilization is accompanied by ferroptosis and/or necroptosis. Our results also pointed at a cross-talk between lysosome-dependent cell death (LDCD) and necroptosis induction after photo-oxidation, and contributed to broaden the understanding of MB-PDT-induced mechanisms and specificity in breast cancer cells. Therefore, we demonstrated that efficient approaches could be designed on the basis of lipid composition and metabolic features for hard-to-treat cancers. The results further reinforce MB-PDT as a therapeutic strategy for highly aggressive human breast cancer cells.

2020 ◽  
Author(s):  
Ancély F. dos Santos ◽  
Alex Inague ◽  
Gabriel S. Arini ◽  
Letícia F. Terra ◽  
Rosangela A.M. Wailemann ◽  
...  

AbstractLack of effective treatments for aggressive breast cancer is still a major global health problem. We previously reported that Photodynamic Therapy using Methylene Blue as photosensitizer (MB-PDT) massively kills metastatic human breast cancer, marginally affecting healthy cells. In this study we aimed to unveil the molecular mechanisms behind MB-PDT effectiveness. Through lipidomic and biochemical approaches we demonstrated that MB-PDT efficiency and specificity relies on polyunsaturated fatty acids-enriched membranes and on the better capacity to deal with photooxidative damage displayed by non-tumorigenic cells. We found out that, in tumorigenic cells, lysosome membrane permeabilization is accompanied by ferroptosis and/or necroptosis. Our results broadened the understanding of MB-PDT-induced photooxidation mechanisms and specificity in breast cancer cells. Therefore, we demonstrated that efficient approaches could be designed on the basis of lipid composition and metabolic features for hard-to-treat cancers. The results further reinforce MB-PDT as a therapeutic strategy for highly aggressive human breast cancer cells.


APOPTOSIS ◽  
2009 ◽  
Vol 14 (7) ◽  
pp. 913-922 ◽  
Author(s):  
A-Mi Seo ◽  
Seung-Woo Hong ◽  
Jae-Sik Shin ◽  
In-Chul Park ◽  
Nam-Joo Hong ◽  
...  

2017 ◽  
Vol 65 (6) ◽  
pp. 1122-1135.e5 ◽  
Author(s):  
Joshua D. Stender ◽  
Jerome C. Nwachukwu ◽  
Irida Kastrati ◽  
Yohan Kim ◽  
Tobias Strid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document