tumorigenic cells
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 20)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Rajeev Vikram ◽  
Wen□Cheng Chou ◽  
Pei-Ei Wu ◽  
Wei-Ting Chen ◽  
Chen-Yang Shen

ABSTRACTBackgroundDiffuse Glioblastoma (GBM) has high mortality and remains one of the most challenging type of cancer to treat. Identifying and characterizing the cells populations driving tumor growth and therapy resistance has been particularly difficult owing to marked inter and intra tumoral heterogeneity observed in these tumors. These tumorigenic populations contain long lived cells associated with latency, immune evasion and metastasis.MethodsHere, we analyzed the single-cell RNA-sequencing data of high grade glioblastomas from four different studies using integrated analysis of gene expression patterns, cell cycle stages and copy number variation to identify gene expression signatures associated with quiescent and cycling neuronal tumorigenic cells.ResultsThe results show that while cycling and quiescent cells are present in GBM of all age groups, they exist in a much larger proportion in pediatric glioblastomas. These cells show similarities in their expression patterns of a number of pluripotency and proliferation related genes. Upon unbiased clustering, these cells explicitly clustered on their cell cycle stage. Quiescent cells in both the groups specifically overexpressed a number of genes for ribosomal protein, while the cycling cells were enriched in the expression of high-mobility group and heterogeneous nuclear ribonucleoprotein group genes. A number of well-known markers of quiescence and proliferation in neurogenesis showed preferential expression in the quiescent and cycling populations identified in our analysis. Through our analysis, we identify ribosomal proteins as key constituents of quiescence in glioblastoma stem cells.ConclusionsThis study identifies gene signatures common to adult and pediatric glioblastoma quiescent and cycling stem cell niches. Further research elucidating their role in controlling quiescence and proliferation in tumorigenic cells in high grade glioblastoma will open avenues in more effective treatment strategies for glioblastoma patients.


Author(s):  
Xiaoli Yang ◽  
Ning Cao ◽  
Lu Chen ◽  
Lin Liu ◽  
Min Zhang ◽  
...  

Our studies have demonstrated that cell tumorigenicity and pluripotent differentiation potential stem from neural stemness or a neural ground state, which is defined by a regulatory network of higher levels of machineries for basic cell physiological functions, including cell cycle, ribosome biogenesis, protein translation, spliceosome, epigenetic modification factors, reprogramming factors, etc., in addition to the neural stemness specific factors. These machineries and neural stemness factors mostly play cancer-promoting roles. It can be deduced that differentiation requires the repression of neural ground state and causes the reduction or loss of neural ground state and thus tumorigenicity in tumorigenic cells. Formerly, we showed that neuronal differentiation led to reduced tumorigenicity in tumorigenic cells. In the present study, we show that non-neural pro-differentiation factors, such as GATA3, HNF4A, HHEX, and FOXA3 that specify mesodermal or/and endodermal tissues during vertebrate embryogenesis, suppress tumorigenicity via repression of neural stemness and promotion of non-neural property in tumorigenic cells. Mechanistically, these transcription factors repress the transcription of neural enriched genes and meanwhile activate genes that specify non-neural properties via direct binding to the promoters of these genes. We also show that combined expression of HHEX and FOXA3 suppresses tumorigenesis effectively in the AOM/DSS model of colitis-associated cancer. We suggest that targeting the property of neural stemness could be an effective strategy for cancer therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Danahe Mohammed ◽  
Chan Young Park ◽  
Jeffrey J. Fredberg ◽  
David A. Weitz

AbstractThe migration of tumorigenic cells is a critical step for metastatic breast cancer progression. Although the role of the extracellular matrix in breast cancer cell migration has been extensively described, the effect of osmotic stress on the migration of tumor breast cohorts remains unclear. Most of our understanding on the effect of osmotic stresses on cell migration comes from studies at the level of the single cell in isolation and does not take cell–cell interactions into account. Here, we study the impact of moderate osmotic stress on the migration of cell clusters composed of either non-tumorigenic or tumorigenic cells. We observe a decrease in migration distance and speed for non-tumorigenic cells but not for tumorigenic ones. To explain these differences, we investigate how osmotic stress impacts the mechanical properties of cell clusters and affects their volumes. Our findings show that tumorigenic mesenchymal cells are less sensitive to osmotic stress than non-tumorigenic cells and suggest that this difference is associated with a lower expression of E-cadherin. Using EGTA treatments, we confirm that the establishment of cell–cell adhesive interactions is a key component of the behavior of cell clusters in response to osmotic stress. This study provides evidence on the low sensitivity of mesenchymal tumorigenic clusters to moderate osmotic stress and highlights the importance of cadherin-based junctions in the response to osmotic stress.


2021 ◽  
Author(s):  
Jing Liu ◽  
Youhua Tan ◽  
Huafeng Zhang ◽  
Yi Zhang ◽  
Pingwei Xu ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1521
Author(s):  
Micael Rodrigues Cunha ◽  
Maurício Temotheo Tavares ◽  
Thais Batista Fernandes ◽  
Roberto Parise-Filho

Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.


2021 ◽  
Vol 95 (10) ◽  
Author(s):  
Wan Kong (Wynton) Yip ◽  
Francisca Cristi ◽  
Georgi Trifonov ◽  
Nashae Narayan ◽  
Mark Kubanski ◽  
...  

ABSTRACT The wild-type reovirus serotype 3 Dearing PL strain (T3wt) is being heavily evaluated as an oncolytic and immunotherapeutic treatment for cancers. Mutations that promote reovirus entry into tumor cells were previously reported to enhance oncolysis; here, we aimed to discover mutations that enhance the postentry steps of reovirus infection in tumor cells. Using directed evolution, we found that reovirus variant T3v10M1 exhibited enhanced replication relative to that of T3wt on a panel of cancer cells. T3v10M1 contains an alanine-to-valine substitution (A612V) in the core-associated μ2, which was previously found to have nucleoside-triphosphatase (NTPase) activities in virions and to facilitate virus factory formation by association with μNS. Paradoxically, the A612V mutation in μ2 from T3v10M1 was discovered to impair NTPase activities and RNA synthesis, leading to a 5-fold higher probability of abortive infection for T3v10M1 relative to that with T3wt. The A612V mutation resides in a previously uncharacterized C-terminal region that juxtaposes the template entry site of the polymerase μ2; our findings thus support an important role for this domain during virus transcription. Despite crippled onset of infection, T3v10M1 exhibited greater accumulation of viral proteins and progeny during replication, leading to increased overall virus burst size. Both far-Western blotting and coimmunoprecipitation (Co-IP) approaches corroborated that the A612V mutation in μ2 increased association with the nonstructural virus protein μNS and enhances burst size. Together, the data show that mutations in the C-terminal loop domain of μ2 inversely regulate NTPase and RNA synthesis versus interactions with μNS, but with a net gain of replication in tumorigenic cells. IMPORTANCE Reovirus is a model system for understanding virus replication and also a clinically relevant virus for cancer therapy. We identified the first mutation that increases reovirus infection in tumorigenic cells by enhancing postentry stages of reovirus replication. The mutation is in a previously uncharacterized C-terminal region of the M1-derived μ2 protein, which we demonstrated affects multiple functions of μ2, namely, NTPase, RNA synthesis, inhibition of antiviral immune response, and association with the virus replication factory-forming μNS protein. These findings promote a mechanistic understanding of viral protein functions. In the future, the benefits of μ2 mutations may be useful for enhancing reovirus potency in tumors.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 284
Author(s):  
Melina Mitsiogianni ◽  
Sotiris Kyriakou ◽  
Ioannis Anestopoulos ◽  
Dimitrios T. Trafalis ◽  
Maria V. Deligiorgi ◽  
...  

Malignant melanoma is one of the most deadly types of solid cancers, a property mainly attributed to its highly aggressive metastatic form. On the other hand, different classes of isothiocyanates, a class of phytochemicals, present in cruciferous vegetables have been characterized by considerable anti-cancer activity in both in vitro and in vivo experimental models. In the current study, we investigated the anti-cancer response of five isothiocyanates in an in vitro model of melanoma consisting of non-metastatic (A375, B16F-10) and metastatic (VMM1, Hs294T) malignant melanoma as well as non-melanoma epidermoid carcinoma (A431) and non-tumorigenic melanocyte-neighboring keratinocyte (HaCaT) cells. Our aim was to compare different endpoints of cytotoxicity (e.g., reactive oxygen species, intracellular glutathione content, cell cycle growth arrest, apoptosis and necrosis) descriptive of an anti-cancer response between non-metastatic and metastatic melanoma as well as non-melanoma epidermoid carcinoma and non-tumorigenic cells. Our results showed that exposure to isothiocyanates induced an increase in intracellular reactive oxygen species and glutathione contents between non-metastatic and metastatic melanoma cells. The distribution of cell cycle phases followed a similar pattern in a manner where non-metastatic and metastatic melanoma cells appeared to be growth arrested at the G2/M phase while elevated levels of metastatic melanoma cells were shown to be at sub G1 phase, an indicator of necrotic cell death. Finally, metastatic melanoma cells were more sensitive apoptosis and/or necrosis as higher levels were observed compared to non-melanoma epidermoid carcinoma and non-tumorigenic cells. In general, non-melanoma epidermoid carcinoma and non-tumorigenic cells were more resistant under any experimental exposure condition. Overall, our study provides further evidence for the potential development of isothiocyanates as promising anti-cancer agents against non-metastatic and metastatic melanoma cells, a property specific for these cells and not shared by non-melanoma epidermoid carcinoma or non-tumorigenic melanocyte cells.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Ancély F. Dos Santos ◽  
Alex Inague ◽  
Gabriel S. Arini ◽  
Letícia F. Terra ◽  
Rosangela A. M. Wailemann ◽  
...  

AbstractLack of effective treatments for aggressive breast cancer is still a major global health problem. We have previously reported that photodynamic therapy using methylene blue as photosensitizer (MB-PDT) massively kills metastatic human breast cancer, marginally affecting healthy cells. In this study, we aimed to unveil the molecular mechanisms behind MB-PDT effectiveness and specificity towards tumor cells. Through lipidomics and biochemical approaches, we demonstrated that MB-PDT efficiency and specificity rely on polyunsaturated fatty acid-enriched membranes and on the better capacity to deal with photo-oxidative damage displayed by non-tumorigenic cells. We found out that, in tumorigenic cells, lysosome membrane permeabilization is accompanied by ferroptosis and/or necroptosis. Our results also pointed at a cross-talk between lysosome-dependent cell death (LDCD) and necroptosis induction after photo-oxidation, and contributed to broaden the understanding of MB-PDT-induced mechanisms and specificity in breast cancer cells. Therefore, we demonstrated that efficient approaches could be designed on the basis of lipid composition and metabolic features for hard-to-treat cancers. The results further reinforce MB-PDT as a therapeutic strategy for highly aggressive human breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document