scholarly journals Splicing factor USP39 promotes ovarian cancer malignancy through maintaining efficient splicing of oncogenic HMGA2

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Shourong Wang ◽  
Zixiang Wang ◽  
Jieyin Li ◽  
Junchao Qin ◽  
Jianping Song ◽  
...  

AbstractAberrant expression of splicing factors was found to promote tumorigenesis and the development of human malignant tumors. Nevertheless, the underlying mechanisms and functional relevance remain elusive. We here show that USP39, a component of the spliceosome, is frequently overexpressed in high-grade serous ovarian carcinoma (HGSOC) and that an elevated level of USP39 is associated with a poor prognosis. USP39 promotes proliferation/invasion in vitro and tumor growth in vivo. Importantly, USP39 was transcriptionally activated by the oncogene protein c-MYC in ovarian cancer cells. We further demonstrated that USP39 colocalizes with spliceosome components in nuclear speckles. Transcriptomic analysis revealed that USP39 deletion led to globally impaired splicing that is characterized by skipped exons and overrepresentation of introns and intergenic regions. Furthermore, RNA immunoprecipitation sequencing showed that USP39 preferentially binds to exon-intron regions near 5′ and 3′ splicing sites. In particular, USP39 facilitates efficient splicing of HMGA2 and thereby increases the malignancy of ovarian cancer cells. Taken together, our results indicate that USP39 functions as an oncogenic splicing factor in ovarian cancer and represents a potential target for ovarian cancer therapy.

2021 ◽  
Vol 7 (9) ◽  
pp. eabb0737
Author(s):  
Zhengnan Yang ◽  
Wei Wang ◽  
Linjie Zhao ◽  
Xin Wang ◽  
Ryan C. Gimple ◽  
...  

Ovarian cancer represents a highly lethal disease that poses a substantial burden for females, with four main molecular subtypes carrying distinct clinical outcomes. Here, we demonstrated that plasma cells, a subset of antibody-producing B cells, were enriched in the mesenchymal subtype of high-grade serous ovarian cancers (HGSCs). Plasma cell abundance correlated with the density of mesenchymal cells in clinical specimens of HGSCs. Coculture of nonmesenchymal ovarian cancer cells and plasma cells induced a mesenchymal phenotype of tumor cells in vitro and in vivo. Phenotypic switch was mediated by the transfer of plasma cell–derived exosomes containing miR-330-3p into nonmesenchymal ovarian cancer cells. Exosome-derived miR-330-3p increased expression of junctional adhesion molecule B in a noncanonical fashion. Depletion of plasma cells by bortezomib reversed the mesenchymal characteristics of ovarian cancer and inhibited in vivo tumor growth. Collectively, our work suggests targeting plasma cells may be a novel approach for ovarian cancer therapy.


2015 ◽  
Vol 96 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Yanyan Ma ◽  
Zengtao Wei ◽  
Robert C Bast ◽  
Zhanying Wang ◽  
Yan Li ◽  
...  

2021 ◽  
Vol 17 (13) ◽  
pp. 3493-3507
Author(s):  
Miao Bai ◽  
Mengqi Cui ◽  
Mingyue Li ◽  
Xinlei Yao ◽  
Yulun Wu ◽  
...  

2019 ◽  
Vol 116 (8) ◽  
pp. 2961-2966 ◽  
Author(s):  
Xiaowei Wu ◽  
Qingyu Luo ◽  
Pengfei Zhao ◽  
Wan Chang ◽  
Yating Wang ◽  
...  

Chemoresistance is a severe outcome among patients with ovarian cancer that leads to a poor prognosis. MCL1 is an antiapoptotic member of the BCL-2 family that has been found to play an essential role in advancing chemoresistance and could be a promising target for the treatment of ovarian cancer. Here, we found that deubiquitinating enzyme 3 (DUB3) interacts with and deubiquitinates MCL1 in the cytoplasm of ovarian cancer cells, which protects MCL1 from degradation. Furthermore, we identified that O6-methylguanine-DNA methyltransferase (MGMT) is a key activator of DUB3 transcription, and that the MGMT inhibitor PaTrin-2 effectively suppresses ovarian cancer cells with elevated MGMT-DUB3-MCL1 expression both in vitro and in vivo. Most interestingly, we found that histone deacetylase inhibitors (HDACis) could significantly activate MGMT/DUB3 expression; the combined administration of HDACis and PaTrin-2 led to the ideal therapeutic effect. Altogether, our results revealed the essential role of the MGMT-DUB3-MCL1 axis in the chemoresistance of ovarian cancer and identified that a combined treatment with HDACis and PaTrin-2 is an effective method for overcoming chemoresistance in ovarian cancer.


2019 ◽  
Vol 9 ◽  
Author(s):  
Li-Na Xu ◽  
Na Zhao ◽  
Jin-Yan Chen ◽  
Piao-Piao Ye ◽  
Xing-Wei Nan ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (7) ◽  
pp. 2281-2295 ◽  
Author(s):  
K. Brasseur ◽  
V. Leblanc ◽  
F. Fabi ◽  
S. Parent ◽  
C. Descôteaux ◽  
...  

Abstract As we previously showed, we have synthesized a new family of 17β-estradiol-platinum(II) hybrids. Earlier studies revealed the VP-128 hybrid to show high efficiency compared with cisplatin toward hormone-dependent breast cancer cells. In the present research, we have studied the antitumor activity of VP-128 in vitro and in vivo against ovarian cancer. In nude mice with ovarian xenografts, VP-128 displayed selective activity toward hormone-dependent tumors and showed higher efficiency than cisplatin to inhibit tumor growth. Similarly, in vitro, transient transfection of estrogen receptor (ER)-α in ERα-negative A2780 cells increased their sensitivity to VP-128-induced apoptosis, confirming the selectivity of VP-128 toward hormone-dependent tumor cells. In agreement, Western blot analysis revealed that VP-128 induced higher caspase-9, caspase-3, and poly (ADP-ribose) polymerase cleavage compared with cisplatin. The activation of caspase-independent apoptosis was also observed in ERα-negative A2780 cells, in which VP-128 rapidly induced the translocation of apoptosis-inducing factor to the nucleus. Conversely, subcellular localization of apoptosis-inducing factor was not modified in ERα-positive Ovcar-3 cells. We also discovered that VP-128 induces autophagy in ovarian cancer cells because of the formation of acidic vesicular organelles (AVOs) and increase of Light Chain 3B-II protein responsible for the formation of autophagosomes; pathways related to autophagy (AKT and mammalian target of rapamycin) were also down-regulated, supporting this mechanism. Finally, the inhibition of autophagy using chloroquine increased VP-128 efficiency, indicating a possible combination therapy. Altogether these results highlight the beneficial value of VP-128 for the treatment of hormone-dependent ovarian cancers and provide preliminary proof of concept for the efficient targeting of ERα- by 17β-estradiol-Pt(II)-linked chemotherapeutic hybrids in these tumors.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1421-1421
Author(s):  
Min Soon Cho ◽  
Qianghua Hu ◽  
Rajesha Rupaimoole ◽  
Anil Sood ◽  
Vahid Afshar-Kharghan

Abstract We have shown that complement component 3 (C3) is expressed in malignant ovarian epithelial cells and enhances cell proliferation in vitro and tumor growth in vivo. C3 is secreted by cancer cells into the tumor microenvironment and promotes tumor growth through an autocrine loop. To understand the mechanism of upregulation of C3 expression in malignant epithelial cells, we studied the transcriptional regulation of C3, and found that TWIST1, a major regulator of EMT, binds to the C3 promoter and regulates C3 transcription. Knockdown of the TWIST1 gene reduced C3 mRNA, and TWIST1 overexpression increased C3 mRNA. TWIST1 promotes epithelial-mesenchymal transition (EMT) during normal development and in metastasis of malignant tumors. An important marker of EMT is a reduction in the surface expression of E-cadherin on cells facilitating migration and invasion of these cells. TWIST1 is a transcriptional repressor of E-cadherin; and because TWIST1 increases C3 expression, we investigated whether C3 is also a negative regulator of E-cadherin expression. We overexpressed C3 in ovarian cancer cells by stable transduction of lentivirus carrying C3 cDNA. Overexpression of C3 was associated with 32% reduction in the expression of E-cadherin resulting in enhanced migration ability of cells by 2.3 folds and invasiveness by 1.75 folds, as compared to control cells transduced with control lentivirus. To investigate whether TWIST1-induced reduction in E-cadherin is C3-mediated or not, we studied the effect of TWIST1 overexpression simultaneous with C3 knockdown in ovarian cancer cells. Overexpression of TWIST1 alone resulted in 70% reduction in E-cadherin mRNA and this was completely reversed after simultaneous C3 knockdown in these cells. To investigate the correlation between C3 and TWIST1 in vivo, we studied the co-expression of these two proteins in mouse embryos (physiologic EMT) and in malignant tumors (pathologic EMT). Given the role of EMT in embryogenesis we immunostained mouse embryos at different stages of development, using antibodies against TWIST1 or C3. Transverse section of 9.5-day post-coitum (9.5dpc) mouse embryos showed co-expression of TWIST1 and C3 in otocyst (ot) and hindbrain (hb) of neural crest. In the whole-mounted 11.5dpc mouse embryos, C3 and TWIST1 were co-expressed in limb buds. Given the role of EMT in malignancy, tumors induced in mice after intraperitoneal injection of murine ovarian cancer cells were resected and immunostained for C3 and TWIST1 proteins. TWIST1 and C3 co-localized at tumor edges, where EMT and tumor cells migration occur. Taken together, these data provide evidence that TWIST1 regulates C3 expression, and C3 promotes EMT through E-cadherin. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document