scholarly journals Dynamic BH3 profiling identifies active BH3 mimetic combinations in non-small cell lung cancer

2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Danielle S. Potter ◽  
Ruochen Du ◽  
Patrick Bhola ◽  
Raphael Bueno ◽  
Anthony Letai

AbstractConventional chemotherapy is still of great utility in oncology and rationally constructing combinations with it remains a top priority. Drug-induced mitochondrial apoptotic priming, measured by dynamic BH3 profiling (DBP), has been shown in multiple cancers to identify drugs that promote apoptosis in vivo. We therefore hypothesized that we could use DBP to identify drugs that would render cancers more sensitive to conventional chemotherapy. We found that targeted agents that increased priming of non-small cell lung cancer (NSCLC) tumor cells resulted in increased sensitivity to chemotherapy in vitro. To assess whether targeted agents that increase priming might enhance the efficacy of cytotoxic agents in vivo as well, we carried out an efficacy study in a PC9 xenograft mouse model. The BH3 mimetic navitoclax, which antagonizes BCL-xL, BCL-w, and BCL-2, consistently primed NSCLC tumors in vitro and in vivo. The BH3 mimetic venetoclax, which electively antagonizes BCL-2, did not. Combining navitoclax with etoposide significantly reduced tumor burden compared to either single agent, while adding venetoclax to etoposide had no effect on tumor burden. Next, we assessed priming of primary patient NSCLC tumor cells on drugs from a clinically relevant oncology combination screen (CROCS). Results confirmed for the first time the utility of BCL-xL inhibition by navitoclax in priming primary NSCLC tumor cells and identified combinations that primed further. This is a demonstration of the principle that DBP can be used as a functional precision medicine tool to rationally construct combination drug regimens that include BH3 mimetics in solid tumors like NSCLC.

2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Shuang Tian ◽  
Ya-Nan Xing ◽  
Pu Xia

Circulating tumor cells can provide important diagnostic and prognostic information of the patients with non-small cell lung cancer (NSCLC). Aldehyde dehydrogenase 1 (ALDH1), a cancer stem cell marker, has been used in various tumors, including NSCLC. In the present study, we isolated the circulating ALDH1+ tumor cells from the NSCLC patients using ALDH1 as a potential marker. Higher percentage of ALDH1+ tumor cells was identified in blood samples from the NSCLC patients compared with normal controls. ALDH1+ cells were correlated with the poor prognosis of these patients by using Kaplan–Meier analysis. In the last, the tumorigenic properties of ALDH1+ tumor cells were determined in vitro and in vivo by using sphere assay and xenograft tumor mouse models. Our in vitro and in vivo experiments demonstrated that ALDH1 could drive the stemness of circulating NSCLC cells. Circulating ALDH1+ cells could be used as a prognostic marker for NSCLC.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Jianjiao Ni ◽  
Xiaofei Zhang ◽  
Juan Li ◽  
Zhiqin Zheng ◽  
Junhua Zhang ◽  
...  

AbstractBone is a frequent metastatic site of non-small cell lung cancer (NSCLC), and bone metastasis (BoM) presents significant challenges for patient survival and quality of life. Osteolytic BoM is characterised by aberrant differentiation and malfunction of osteoclasts through modulation of the TGF-β/pTHrP/RANKL signalling pathway, but its upstream regulatory mechanism is unclear. In this study, we found that lncRNA-SOX2OT was highly accumulated in exosomes derived from the peripheral blood of NSCLC patients with BoM and that patients with higher expression of exosomal lncRNA-SOX2OT had significantly shorter overall survival. Additionally, exosomal lncRNA-SOX2OT derived from NSCLC cells promoted cell invasion and migration in vitro, as well as BoM in vivo. Mechanistically, we discovered that NSCLC cell-derived exosomal lncRNA-SOX2OT modulated osteoclast differentiation and stimulated BoM by targeting the miRNA-194-5p/RAC1 signalling axis and TGF-β/pTHrP/RANKL signalling pathway in osteoclasts. In conclusion, exosomal lncRNA-SOX2OT plays a crucial role in promoting BoM and may serve as a promising prognostic biomarker and treatment target in metastatic NSCLC.


Drug Delivery ◽  
2021 ◽  
Vol 28 (1) ◽  
pp. 1510-1523
Author(s):  
Ying Wang ◽  
Mimi Guo ◽  
Dingmei Lin ◽  
Dajun Liang ◽  
Ling Zhao ◽  
...  

2021 ◽  
Vol 12 (19) ◽  
pp. 2551-2563
Author(s):  
Wei Tian ◽  
Yinping Sun ◽  
Yuping Cheng ◽  
Xiao Ma ◽  
Weina Du ◽  
...  

2018 ◽  
Vol 51 (6) ◽  
pp. 2938-2954 ◽  
Author(s):  
Jing Shen ◽  
Shoubo Cao ◽  
Xin Sun ◽  
Bo Pan ◽  
Jingyan Cao ◽  
...  

Background/Aims: Sonodynamic therapy (SDT) is expected to be a new method to solve the clinical problems caused by advanced metastasis in patients with lung cancer. The use of ultrasound has the advantage of being noninvasive, with deep-penetration properties. This study explored the anti-tumor effect of SDT with a new sonosensitizer, sinoporphyrin sodium (DVDMS), on the human small cell lung cancer H446 cell line in vitro and in vivo. Methods: Absorption of DVDMS was detected by a fluorescence spectrophotometer, and DVDMS toxicity was determined using a Cell Counting Kit-8. Mitochondrial membrane potential (MMP) was assessed using the JC-1 fluorescent probe. Cell apoptosis was measured by flow cytometry, and apoptosis-related proteins were detected by western blotting. The expression of cytokines was measured using an enzyme-linked immunosorbent assay and quantitative real-time PCR. To verify the in vitro results, we detected tumor volumes and weight changes in a xenograft nude mouse model after DVDMS-SDT. Hematoxylin and eosin staining was used to observe changes to the tumor, heart, liver, spleen, lung, and kidney of the mice, and immunohistochemistry was used to examine changes in the expression of tumor CD34 and receptor-interacting protein kinase-3 (RIP3), while terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling was used to observe apoptosis in tumor tissues. Results: DVDMS-SDT-treated H446 cells increased the rate of cellular apoptosis and the levels of reactive oxygen species (ROS), cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and caspase-10, and decreased the levels of MMP, RIP3, B-cell lymphoma 2, vascular endothelial growth factor, and tumor necrosis factor-α. The sonotoxic effect was mediated by ROS and was reduced by a ROS scavenger (N-acetyl-L-cysteine). In the in vivo mouse xenograft model, DVDMS-SDT showed efficient anti-cancer effects with no visible side effects. Conclusion: DVDMS-SDT induced apoptosis in H446 cells, in part by targeting mitochondria through the mitochondria-mediated apoptosis signaling pathway, and the extrinsic apoptosis pathway was also shown to be involved. Both apoptosis and changes in RIP3 expression were closely related to the generation of ROS. DVDMS-SDT will be advantageous for the management of small cell lung cancer due to its noninvasive characteristics.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Nazanin Pirooznia ◽  
Khosrou Abdi ◽  
Davood Beiki ◽  
Farshad Emami ◽  
Seyed Shahriar Arab ◽  
...  

The αvβ3 integrin receptors have high expression on proliferating growing tumor cells of different origins including non-small-cell lung cancer. RGD-containing peptides target the extracellular domain of integrin receptors. This specific targeting makes these short sequences a suitable nominee for theranostic application. DOTA-E(cRGDfK)2 was radiolabeled with 68Ga efficiently. The in vivo and in vitro stability was examined in different buffer systems. Metabolic stability was assessed in mice urine. In vitro specific binding, cellular uptake, and internalization were determined. The tumor-targeting potential of [68Ga]Ga-DOTA-E(cRGDfK)2 in a lung cancer mouse model was studied. Besides, the very early diagnostic potential of the 68Ga-labeled RGD peptide was evaluated. The acquisition and reconstruction of the PET-CT image data were also carried out. Radiochemical and radionuclide purity for [68Ga]Ga-DOTA-E(cRGDfK)2 was >%98 and >%99, respectively. Radiotracer showed high in vivo, in vitro, and metabolic stability which was determined by ITLC. The dissociation constant (Kd) of [68Ga]Ga-DOTA-E(cRGDfK)2 was 15.28 nM. On average, more than 95% of the radioactivity was specific binding (internalized + surface-bound) to A549 cells. Biodistribution data showed that radiolabeled peptides were accumulated significantly in A549 tumor and excreted rapidly by the renal system. Tumor uptake peaks were at 1-hour postinjection for [68Ga]Ga-DOTA-E(cRGDfK)2. The tumor was clearly visualized in all images. [68Ga]Ga-DOTA-E(cRGDfK)2 can be used as a peptide-based imaging agent allowing very early detection of different cancers overexpressing αvβ3 integrin receptors and can be a potential candidate in clinical peptide-based imaging for lung cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ya-Xin Lv ◽  
Hao-Ran Pan ◽  
Xin-Ying Song ◽  
Qing-Qi Chang ◽  
Dan-Dan Zhang

Hedyotis diffusa (HD) plus Scutellaria barbata (SB) have been widely used in antitumor clinical prescribes as one of herb pairs in China. We investigated the effect of aqueous extract from Hedyotis diffusa plus Scutellaria barbata at the equal weight ratio (HDSB11) in inhibiting the growth of murine non-small-cell lung cancer cell (NSCLC) line LLC in vivo and in vitro in this study. Compared with other aqueous extracts, HDSB11 showed the lowest IC50 in inhibiting cell proliferation at 0.43 mg/ml. Besides, HDSB11 effectively suppressed colony formation and induced cell apoptosis. The further assessment of HDSB11 on the murine Lewis-lung-carcinoma-bearing mouse model showed it significantly inhibited tumors’ bioluminescence at the dose of 30 g crude drug/kg. Mechanistically, HDSB11 attenuated the expressions of NLRP3, procaspase-1, caspase-1, PRAP, Bcl-2, and cyclin D1 and downregulated the phosphorylation levels of NF-κB, ERK, JNK, and p38 MAPK. In conclusion, HDSB11 could alleviate cell proliferation and colony formation and induce apoptosis in vitro and tumor growth in vivo, partly via NF-κB and MAPK signaling pathways to suppress NLRP3 expression.


2019 ◽  
Author(s):  
Xiao Lei ◽  
Zhe Liu ◽  
Kun Cao ◽  
Yuanyuan Chen ◽  
Jianming Cai ◽  
...  

AbstractRadiotherapy is an indispensable strategy for lung cancer, however, treatment failure or reoccurrence is often found in patients due to the developing radioresistance. Novel approaches are required for radiosensitizing to improve the therapeutic efficacy. In present study, we found that transglutaminase 2 (TG2) confers radioresistance in non-small cell lung cancer (NSCLC) cells through regulating TOPOIIα and promoting DNA repair. Our data showed that TG2 inhibitor or knockdown increased NSCLC radiosensitivity in vivo and in vitro. We found that TG2 translocated into nucleus and located to DSB sites, surprisingly, knockdown TG2 or glucosamine inhibited the phosphorylation of ATM, ATR and DNA-Pkcs. Through IP-MS assay and functional experiments, we identified that TOPOIIα as an downstream factor of TG2. Moreover, we found that TGase domain account for the interaction with TOPOIIα. Finally, we found that TG2 expression was correlated with poor survival in lung adenocarcinoma instead of squamous cell carcinoma. In conclusion, we demonstrated that inhibiting TG2 sensitize NSCLC to IR through interfere TOPOIIα mediated DNA repair, suggesting TG2 as a potential radiosensitizing target in NSCLC.


Sign in / Sign up

Export Citation Format

Share Document