scholarly journals Rab35 and glucocorticoids regulate APP and BACE1 trafficking to modulate Aβ production

2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Viktoriya Zhuravleva ◽  
João Vaz-Silva ◽  
Mei Zhu ◽  
Patricia Gomes ◽  
Joana M. Silva ◽  
...  

AbstractChronic stress and elevated glucocorticoids (GCs), the major stress hormones, are risk factors for Alzheimer’s disease (AD) and promote AD pathomechanisms, including overproduction of toxic amyloid-β (Aβ) peptides and intraneuronal accumulation of hyperphosphorylated Tau protein. The latter is linked to downregulation of the small GTPase Rab35, which mediates Tau degradation via the endolysosomal pathway. Whether Rab35 is also involved in Aβ overproduction remains an open question. Here, we find that hippocampal Rab35 levels are decreased not only by stress/GC but also by aging, another AD risk factor. Moreover, we show that Rab35 negatively regulates Aβ production by sorting amyloid precursor protein (APP) and β-secretase (BACE1) out of the endosomal network, where they interact to produce Aβ. Interestingly, Rab35 coordinates distinct intracellular trafficking steps for BACE1 and APP, mediated by its effectors OCRL and ACAP2, respectively. Finally, we demonstrate that Rab35 overexpression prevents the amyloidogenic trafficking of APP and BACE1 induced by high GC levels. These studies identify Rab35 as a key regulator of APP processing and suggest that its downregulation may contribute to stress-related and AD-related amyloidogenesis.

2021 ◽  
Author(s):  
Viktoriya Zhuravleva ◽  
João Vaz Silva ◽  
Mei Zhu ◽  
Patrícia Gomes ◽  
Joana M Silva ◽  
...  

Chronic stress and elevated glucocorticoids (GCs), the major stress hormones, are risk factors for Alzheimer's disease (AD) and promote AD pathomechanisms, including overproduction of toxic amyloid-β (Aβ) peptides and intraneuronal accumulation of hyperphosphorylated Tau protein. The latter is linked to downregulation of the small GTPase Rab35, which mediates Tau degradation via the endolysosomal pathway. Whether Rab35 is also involved in Aβ overproduction remains an open question. Here, we find that hippocampal Rab35 levels are decreased not only by stress/GC but also by aging, another AD risk factor. Moreover, Rab35 negatively regulates Aβ production by sorting amyloid precursor protein (APP) and β-secretase (BACE1) out of the endosomal network, where they interact to produce Aβ. Interestingly, Rab35 coordinates distinct intracellular trafficking events for BACE1 and APP, mediated by its effectors OCRL and ACAP2, respectively. Finally, we show that Rab35 overexpression prevents the amyloidogenic trafficking of APP and BACE1 induced by high GC levels. These studies identify Rab35 as a key regulator of APP processing and suggest that its downregulation may contribute to stress- and AD-related amyloidogenesis.


Author(s):  
Qi Wu ◽  
Leonardo Cortez ◽  
Razieh Kamali-Jamil ◽  
Valerie Sim ◽  
Holger Wille ◽  
...  

Amyloid β (Aβ) peptides generated from the amyloid precursor protein (APP) play a critical role in the development of Alzheimer's disease (AD) pathology. Aβ-containing neuronal exosomes, which represent a novel form of intercellular communication, have been shown to influence function/vulnerability of neurons in AD. Unlike neurons, the significance of exosomes derived from astrocytes remains unclear. In this study, we evaluated the significance of exosomes derived from U18666A-induced cholesterol-accumulated astrocytes in the development of AD pathology. Our results show that cholesterol accumulation decreases exosome secretion, whereas lowering cholesterol level increases exosome secretion from cultured astrocytes. Interestingly, exosomes secreted from U18666A-treated astrocytes contain higher levels of APP, APP-CTFs, soluble APP, APP secretases and Aβ1-40 than exosomes secreted from control astrocytes. Furthermore, we show that exosomes derived from U18666A-treated astrocytes can lead to neurodegeneration, which is attenuated by decreasing Aβ production or by neutralizing exosomal Aβ peptide with an Aβ antibody. These results, taken together, suggest that exosomes derived from cholesterol-accumulated astrocytes can play an important role in trafficking APP/Aβ peptides and influencing neuronal viability in the affected regions of the AD brain.


2012 ◽  
Vol 287 (15) ◽  
pp. 11991-12005 ◽  
Author(s):  
Ji-Yeun Hur ◽  
Yasuhiro Teranishi ◽  
Takahiro Kihara ◽  
Natsuko Goto Yamamoto ◽  
Mitsuhiro Inoue ◽  
...  

In Alzheimer disease, oligomeric amyloid β-peptide (Aβ) species lead to synapse loss and neuronal death. γ-Secretase, the transmembrane protease complex that mediates the final catalytic step that liberates Aβ from its precursor protein (APP), has a multitude of substrates, and therapeutics aimed at reducing Aβ production should ideally be specific for APP cleavage. It has been shown that APP can be processed in lipid rafts, and γ-secretase-associated proteins can affect Aβ production. Here, we use a biotinylated inhibitor for affinity purification of γ-secretase and associated proteins and mass spectrometry for identification of the purified proteins, and we identify novel γ-secretase-associated proteins in detergent-resistant membranes from brain. Furthermore, we show by small interfering RNA-mediated knockdown of gene expression that a subset of the γ-secretase-associated proteins, in particular voltage-dependent anion channel 1 (VDAC1) and contactin-associated protein 1 (CNTNAP1), reduced Aβ production (Aβ40 and Aβ42) by around 70%, whereas knockdown of presenilin 1, one of the essential γ-secretase complex components, reduced Aβ production by 50%. Importantly, these proteins had a less pronounced effect on Notch processing. We conclude that VDAC1 and CNTNAP1 associate with γ-secretase in detergent-resistant membranes and affect APP processing and suggest that molecules that interfere with this interaction could be of therapeutic use for Alzheimer disease.


2020 ◽  
Vol 10 (2) ◽  
pp. 122 ◽  
Author(s):  
Bor Luen Tang

Amyloid β (Aβ) peptides generated via sequential β- and γ-secretase processing of the amyloid precursor protein (APP) are major etiopathological agents of Alzheimer’s disease (AD). However, an initial APP cleavage by an α-secretase, such as the a disintegrin and metalloproteinase domain-containing protein ADAM10, precludes β-secretase cleavage and leads to APP processing that does not produce Aβ. The latter appears to underlie the disease symptom-attenuating effects of a multitude of experimental therapeutics in AD animal models. Recent work has indicated that an endogenous inhibitor of ADAM10, secreted-frizzled-related protein 1 (SFRP1), is elevated in human AD brains and associated with amyloid plaques in mouse AD models. Importantly, genetic or functional attenuation of SFRP1 lowered Aβ accumulation and improved AD-related histopathological and neurological traits. Given SFRP1′s well-known activity in attenuating Wnt signaling, which is also commonly impaired in AD, SFRP1 appears to be a promising therapeutic target for AD. This idea, however, needs to be addressed with care because of cancer enhancement potentials resulting from a systemic loss of SFRP1 activity, as well as an upregulation of ADAM10 activity. In this focused review, I shall discuss α-secretase-effected APP processing in AD with a focus on SFRP1, and explore the contrasting perspectives arising from the recent findings.


2021 ◽  
pp. 1-12
Author(s):  
Umma Habiba ◽  
Makiko Ozawa ◽  
James K. Chambers ◽  
Kazuyuki Uchida ◽  
Joseph Descallar ◽  
...  

Background: Canine cognitive dysfunction (CCD) is a progressive syndrome recognized in mature to aged dogs with a variety of neuropathological changes similar to human Alzheimer’s disease (AD), for which it is thought to be a good natural model. However, the presence of hyperphosphorylated tau protein (p-Tau) in dogs with CCD has only been demonstrated infrequently. Objective: The aim of the present study was to investigate the presence of p-Tau and amyloid-β oligomer (Aβo) in cerebral cortex and hippocampus of dogs with CCD, with focus on an epitope retrieval protocol to unmask p-Tau. Methods: Immunohistochemical and immunofluorescence analysis of the cortical and hippocampal regions of five CCD-affected and two nondemented aged dogs using 4G8 anti-Aβp, anti-Aβ 1 - 42 nanobody (PrioAD13) and AT8 anti-p-Tau (Ser202, Thr205) antibody were used to demonstrate the presence of Aβ plaques (Aβp) and Aβ 1 - 42 oligomers and p-Tau deposits, respectively. Results: The extracellular Aβ senile plaques were of the diffuse type which lack the dense core normally seen in human AD. While p-Tau deposits displayed a widespread pattern and closely resembled the typical human neuropathology, they did not co-localize with the Aβp. Of considerable interest, however, widespread intraneuronal deposition of Aβ 1 - 42 oligomers were exhibited in the frontal cortex and hippocampal region that co-localized with p-Tau. Conclusion: Taken together, these findings reveal further shared neuropathologic features of AD and CCD, supporting the case that aged dogs afflicted with CCD offer a relevant model for investigating human AD.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 349 ◽  
Author(s):  
Yasuomi Urano ◽  
Mina Takahachi ◽  
Ryo Higashiura ◽  
Hitomi Fujiwara ◽  
Satoru Funamoto ◽  
...  

Amyloid-β (Aβ) peptides play a crucial role in the pathogenesis of Alzheimer’s disease (AD). Aβ production, aggregation, and clearance are thought to be important therapeutic targets for AD. Curcumin has been known to have an anti-amyloidogenic effect on AD. In the present study, we performed screening analysis using a curcumin derivative library with the aim of finding derivatives effective in suppressing Aβ production with improved bioavailability of curcumin using CHO cells that stably express human amyloid-β precursor protein and using human neuroblastoma SH-SY5Y cells. We found that the curcumin derivative GT863/PE859, which has been shown to have an inhibitory effect on Aβ and tau aggregation in vivo, was more effective than curcumin itself in reducing Aβ secretion. We further found that GT863 inhibited neither β- nor γ-secretase activity, but did suppress γ-secretase-mediated cleavage in a substrate-dependent manner. We further found that GT863 suppressed N-linked glycosylation, including that of the γ-secretase subunit nicastrin. We also found that mannosidase inhibitors that block the mannose trimming step of N-glycosylation suppressed Aβ production in a similar fashion, as was observed as a result of treatment with GT863. Collectively, these results suggest that GT863 downregulates N-glycosylation, resulting in suppression of Aβ production without affecting secretase activity.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 152
Author(s):  
Jeong-Hyun Yoon ◽  
Nayoung Lee ◽  
Kumju Youn ◽  
Mi Ra Jo ◽  
Hyeung-Rak Kim ◽  
...  

The proteolytic processing of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase releases amyloid-β peptide (Aβ), which deposits in amyloid plaques and contributes to the initial causative events of Alzheimer’s disease (AD). In the present study, the regulatory mechanism of APP processing of three phlorotannins was elucidated in Swedish mutant APP overexpressed N2a (SweAPP N2a) cells. Among the tested compounds, dieckol exhibited the highest inhibitory effect on both intra- and extracellular Aβ accumulation. In addition, dieckol regulated the APP processing enzymes, such as α-secretase (ADAM10), β-secretase, and γ-secretase, presenilin-1 (PS1), and their proteolytic products, sAPPα and sAPPβ, implying that the compound acts on both the amyloidogenic and non-amyloidogenic pathways. In addition, dieckol increased the phosphorylation of protein kinase B (Akt) at Ser473 and GSK-3β at Ser9, suggesting dieckol induced the activation of Akt, which phosphorylated GSK-3β. The specific phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 triggered GSK-3β activation and Aβ expression. In addition, co-treatment with LY294002 noticeably blocked the effect of dieckol on Aβ production, demonstrating that dieckol promoted the PI3K/Akt signaling pathway, which in turn inactivated GSK-3β, resulting in the reduction in Aβ levels.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 962
Author(s):  
Arif Andra ◽  
Shoko Tanigawa ◽  
Tomohiro Bito ◽  
Atsushi Ishihara ◽  
Fumio Watanabe ◽  
...  

High homocysteine (Hcy) levels, mainly caused by vitamin B12 deficiency, have been reported to induce amyloid-β (Aβ) formation and tau hyperphosphorylation in mouse models of Alzheimer’s disease. However, the relationship between B12 deficiency and Aβ aggregation is poorly understood, as is the associated mechanism. In the current study, we used the transgenic C. elegans strain GMC101, which expresses human Aβ1–42 peptides in muscle cells, to investigate the effects of B12 deficiency on Aβ aggregation–associated paralysis. C. elegans GMC101 was grown on nematode growth medium with or without B12 supplementation or with 2-O-α-D-glucopyranosyl-L-ascorbic acid (AsA-2G) supplementation. The worms were age-synchronized by hypochlorite bleaching and incubated at 20 °C. After the worms reached the young adult stage, the temperature was increased to 25 °C to induce Aβ production. Worms lacking B12 supplementation exhibited paralysis faster and more severely than those that received it. Furthermore, supplementing B12-deficient growth medium with AsA-2G rescued the paralysis phenotype. However, AsA-2G had no effect on the aggregation of Aβ peptides. Our results indicated that B12 supplementation lowered Hcy levels and alleviated Aβ toxicity, suggesting that oxidative stress caused by elevated Hcy levels is an important factor in Aβ toxicity.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
David A. Hicks ◽  
Alys C. Jones ◽  
Stuart M. Pickering-Brown ◽  
Nigel M. Hooper

Abstract Alzheimer’s disease (AD) is a neurodegenerative condition, of which one of the cardinal pathological hallmarks is the extracellular accumulation of amyloid β (Aβ) peptides. These peptides are generated via proteolysis of the amyloid precursor protein (APP), in a manner dependent on the β-secretase, BACE1 and the multicomponent γ-secretase complex. Recent data also suggest a contributory role in AD of transactive response DNA binding protein 43 (TDP-43). There is little insight into a possible mechanism linking TDP-43 and APP processing. To this end, we used cultured human neuronal cells to investigate the ability of TDP-43 to interact with APP and modulate its proteolytic processing. Immunocytochemistry showed TDP-43 to be spatially segregated from both the extranuclear APP holoprotein and its nuclear C-terminal fragment. The latter (APP intracellular domain) was shown to predominantly localise to nucleoli, from which TDP-43 was excluded. Furthermore, neither overexpression of each of the APP isoforms nor siRNA-mediated knockdown of APP had any effect on TDP-43 expression. Doxycycline-stimulated overexpression of TDP-43 was explored in an inducible cell line. Overexpression of TDP-43 had no effect on expression of the APP holoprotein, nor any of the key proteins involved in its proteolysis. Furthermore, increased TDP-43 expression had no effect on BACE1 enzymatic activity or immunoreactivity of Aβ1-40, Aβ1-42 or the Aβ1-40:Aβ1-42 ratio. Also, siRNA-mediated knockdown of TDP-43 had no effect on BACE1 immunoreactivity. Taken together, these data indicate that TDP-43 function and/or dysfunction in AD is likely independent from dysregulation of APP expression and proteolytic processing and Aβ generation.


Sign in / Sign up

Export Citation Format

Share Document