aβ aggregation
Recently Published Documents


TOTAL DOCUMENTS

374
(FIVE YEARS 196)

H-INDEX

39
(FIVE YEARS 9)

eFood ◽  
2022 ◽  
Author(s):  
Min Wang ◽  
Congcong Gong ◽  
William Amakye ◽  
Jiaoyan Ren

Inhibiting β-amyloid (Aβ) aggregation is of significance in finding potential candidates for Alzheimer’s disease (AD) treatment. Accumulating evidence suggests that nutrition is important for improving cognition and reducing AD risk. Walnut has been widely used as a functional food for brain health; however the underlying mechanisms remain unknown. Here, we investigated the molecular level alteration in Arctic mutant Aβ42 induced aggregation cell model by RNA-seq and iTRAQ approaches after walnut-derived peptides Pro-Pro-Lys-Asn-Trp (PW5) and Trp-Pro-Pro-Lys-Asn (WN5) interventions. PW5 or WN5 could significantly decrease abnormal Aβ42 aggregates. However, resultant alterations in transcriptome (substantially unchanged) were inconsistent with proteomic data (marked change). Proteomic analysis revealed 184 and 194 differentially expressed proteins unique to PW5 and WN5 treatment, respectively, for inhibiting Aβ42 protein production or increasing protein degradation via the mismatch repair pathways. Our study provides new insights into the effectiveness of food-derived peptides for anti-Aβ42 aggregation in AD.


Author(s):  
Ashwani K. Dhingra ◽  
Bhawna Chopra ◽  
Akash Jain ◽  
Jasmine Chaudhary

Background: Alzheimer's disease (AD) is a multifactorial disorder coupled with an array of neuropathological mechanisms, including tau phosphorylation, Aβ aggregation, metal ion deregulation, and oxidative stress, along with neuro-inflammation. The clinically available drugs for the management of AD include four acetylcholinesterase inhibitors and one glutamatergic antagonist. These agents provide only temporary relief from the symptoms by altering the neurotransmitter level in the brain. Objective: Keeping in view the focus on research, the numerous pharmacological activities associated with the aromatic diazole heterocyclic nucleus, imidazole, triggered the medicinal chemist to develop a large number of novel anti-AD compounds targeting multiple pathological mechanisms associated with AD. These prepared analogs represent a higher potential against neurological disorders, including AD. This review article aims an ornately pronounce the therapeutic voyage of imidazole and its analogs as anti-AD. Method: It emphasizes the synthesized imidazole derivatives as anti–AD with multiple targets reviewed from the data available on Pubmed. Result: These compounds diminish the pathophysiological aspects of AD; still, further studies are required to prove the safety and efficacy of these compounds in humans. Conclusion: The review aims to provide knowledge and highlight the status of this moiety in the design and development of novel drug candidates against Alzheimer’s disease conditions. Thus, it paves the way for further work.


2022 ◽  
Author(s):  
Mouli Konar ◽  
Debasis Ghosh ◽  
Sourav Samanta ◽  
T. Govindaraju

Amyloid beta (Aβ) aggregation species-associated cellular stress instigates cytotoxicity and adverse cellular stiffness to neuronal cells. The study and modulation of these adverse effects demand immediate attention to tackle Alzheimer’s...


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Yee-Jin Yun ◽  
Bong-Hwan Park ◽  
Jingang Hou ◽  
Jung-Pyo Oh ◽  
Jin-Hee Han ◽  
...  

Ginsenoside F1, the metabolite of Rg1, is one of the most important constituents of Panax ginseng. Although the effects of ginsenosides on amyloid beta (Aβ) aggregation in the brain are known, the role of ginsenoside F1 remains unclear. Here, we investigated the protective effect of ginsenoside F1 against Aβ aggregation in vivo and in vitro. Treatment with 2.5 μM ginsenoside F1 reduced Aβ-induced cytotoxicity by decreasing Aβ aggregation in mouse neuroblastoma neuro-2a (N2a) and human neuroblastoma SH-SY5Y neuronal cell lines. Western blotting, real-time PCR, and siRNA analysis revealed an increased level of insulin-degrading enzyme (IDE) and neprilysin (NEP). Furthermore, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis confirmed that ginsenoside F1 could pass the blood–brain barrier within 2 h after administration. Immunostaining results indicate that ginsenoside F1 reduces Aβ plaques in the hippocampus of APPswe/PSEN1dE9 (APP/PS1) double-transgenic Alzheimer’s disease (AD) mice. Consistently, increased levels of IDE and NEP protein and mRNA were observed after the 8-week administration of 10 mg/kg/d ginsenoside F1. These data indicate that ginsenoside F1 is a promising therapeutic candidate for AD.


2021 ◽  
Vol 18 ◽  
Author(s):  
Rohit Bhatia ◽  
Sankha Shubhra Chakrabarti ◽  
Upinder Kaur ◽  
Gaurav Parashar ◽  
Anindita Banerjee ◽  
...  

: Alzheimer's disease (AD) is an age-associated neurodegenerative disorder and is one of the common health issues around the globe. It is characterized by memory loss and a decline in other cog- nitive domains, including executive function. The progression of AD is associated with complex events, and the exact pathogenesis is still unrevealed. Various mechanisms which are thought to be associated with the initiation of AD include a decreased concentration of acetylcholine (ACh), deposi- tion of amyloid-β (Aβ)peptide, dyshomeostasis of redox metal ions, and prolonged oxidative stress. Due to the simultaneous progression of diverse pathogenetic pathways, no ideal therapeutic agent has been developed to date. The drugs which are available against AD provide only symptomatic benefits and do not have disease-modifying activity. Therefore, in search of ideal therapeutic candidates, the concept of molecular hybrids has been under keen investigation for the past few years. Hybrid mole- cules are able to inhibit or activate or modify the physiology of more than one target simultaneously. Coumarin scaffolds have shown the excellent potential of ACh esterase inhibition, MAO-B inhibition, and anti-Aβ aggregation. In the present review, we have focused on different reported coumarin hy- brids as multi-target-directed agents against AD. These include hybrids of coumarin with carbazole, benzofuran, dithiocarbamate, quinoline, pargyline, tacrine, N-benzyl pyridinium, donepezil, purine, piperidine, morpholine, aminophenol, benzylamino, halophenylalkylamidic, thiazole, thiourea, hy- droxypyridinone, triazole, piperazine, chalcone, etc. Along with the therapeutic potentials of these hy- brids, important clinical investigations and the structure-activity relationship has also been discussed in this compilation.


Author(s):  
Wei Wang ◽  
Xun-Hu Gu ◽  
Min Li ◽  
Zhi-Juan Cheng ◽  
Sheng Tian ◽  
...  

Abstract The nuclear factor kappa B (NF-κB) pathway and inhibitor of NF-κB kinase β (IKKβ) are involved in Alzheimer disease (AD) pathogenesis. This study explored the mechanisms underlying IKKβ-mediated Aβ aggregation and neuron regeneration in APP.PS1 mice. Adenoviral transduction particles were injected into the hippocampal CA1 region of the mice to knock down or inhibit target genes. Morris water maze was performed to evaluate the cognitive function of the mice. Aβ deposition was determined by histological examination. sh-IKKβ plasmids and microRNA (miR)-155-5p inhibitor were transfected into Aβ1-42-induced N2a cells. The expressions of AD-related proteins were detected by Western blot. The interaction between S-phase kinase-associated protein 2 (SKP2) and IKKβ was assessed by co-immunoprecipitation. IKKβ knockdown (KD) and miR-155-5p inhibition ameliorated cognitive impairment, improved neuron regeneration, and attenuated Aβ deposition in APP/PS1 mice. SKP2 KD aggravated cognitive impairment, inhibited neuron regeneration, and promoted Aβ deposition in the mice. SKP2 regulated the stability of IKKβ protein via ubiquitination. MiR-155-5p regulates Aβ deposition and the expression of Aβ generation-related proteins in N2a cells via targeting SKP2. These results indicate that the miR-155-5p/SKP2/IKKβ axis was critical for pathogenesis in this AD model and suggest the potential of miR-155-5p as a target for AD treatment.


2021 ◽  
Author(s):  
Lin Li ◽  
Wenjun Li ◽  
Xiangru Zheng ◽  
Qinglong Liu ◽  
Qian Du ◽  
...  

Abstract Background Alzheimer's disease (AD) is the most common type of neurodegenerative disease in contemporary era, and it is still clinically incurable. Eriodictyol, a natural flavonoid compound mainly exists in citrus fruits and some Chinese herbal medicine, has been reported with its effect of anti-inflammatory, antioxidant, anti-cancer and neuroprotective effects. However, there are few studies on the anti-AD effect and molecular mechanism of eriodictyol. Methods APP/PS1 mice were treated with eriodictyol and the cognitive function of mice was assessed by behavioral tests. The level of amyloid-β (Aβ) aggregation and hyper-phosphorylation of Tau in the brain of mice were detected by histological analysis and Western blotting. Meanwhile, HT-22 cells which induced by amyloid-β peptide (1-42) (Aβ1−42) oligomer were treated with eriodictyol after which cell viability was determined and the production of p-Tau was tested by Western blotting. Then, the characteristics of ferroptosis, including iron aggregation, lipid peroxidation and the expression of glutathione peroxidase type 4(GPX4), were determined both in vivo and in vitro by Fe straining, Western blotting and qPCR assay. Additionally, the expression level of Vitamin D receptor (VDR) and the activity of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway were tested by Western blotting and qPCR assay. After that, the HT-22 cells with VDR knockout were used to explore the potential mechanisms and the relationship between VDR and Nrf2 was further assessed by coimmunoprecipitation assay and bioinformatics analysis. Results Eriodictyol obviously ameliorated cognitive deficits in APP/PS1 mice, suppressed Aβ aggregation and the phosphorylated level Tau in the brain of APP/PS1 mice. Meanwhile, eriodictyol could inhibit Tau hyper-phosphorylation and neurotoxicity in HT-22 cells induced by Aβ1−42 oligomer. Furthermore, both in vivo and in vitro, eriodictyol showed the anti-ferroptosis effect and its mechanism may connected with the activation of Nrf2/HO-1 signaling pathway. Additionally, the further experiment explains that the activation of Nrf2/HO-1 signaling pathway with eriodictyol treatment mediated by VDR. Conclusions Eriodictyol alleviated memory impairment and AD-like pathological changes via activating Nrf2/HO-1 signaling pathway mediated by VDR, which provide a new possibility for the treatment of AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xi Zhou ◽  
Shuyang Hu ◽  
Shuangling Wang ◽  
Yu Pang ◽  
Yulong Lin ◽  
...  

Multi-target intervention and synergistic treatment are critical for the drug development of Alzheimer’s disease (AD) due to its complex and multifactional nature. Oxidative stress and amyloid β peptides (Aβ) accumulation have been recognized as therapeutic targets for AD. Herein, with ability to inhibit Aβ aggregation and the broad-spectrum antioxidant properties, the large amino acid mimicking selenium-doped carbon quantum dots (SeCQDs) are presented as novel nanoagents for multi-target therapy of AD. Compared with the precursor, selenocystine, SeCQDs which maintain the intrinsic properties of both selenium and carbon quantum dots (CQDs) possess good biocompatibility and a remarkable ROS-scavenging activity. Moreover, the functionalized α-carboxyl and amino groups on edge of SeCQDs can trigger multivalent interactions with Aβ, leading to the ability of SeCQDs to inhibit Aβ aggregation. In vivo study demonstrated that SeCQDs can significantly ameliorate the Aβ induced memory deficits, reduce Aβ accumulation and inhibit neuron degeneration in AD model rats. The versatility of functionalization and potential ability to cross the blood-brain barrier (BBB) make SeCQDs as prospective nanodrugs for treating AD.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1592
Author(s):  
Panchanan Maiti ◽  
Jayeeta Manna ◽  
Joshua Thammathong ◽  
Bobbi Evans ◽  
Kshatresh Dutta Dubey ◽  
...  

Despite its potent anti-amyloid properties, the utility of curcumin (Cur) for the treatment of Alzheimer’s disease (AD) is limited due to its low bioavailability. Tetrahydrocurcumin (THC), a more stable metabolite has been found in Cur-treated tissues. We compared the anti-amyloid and neuroprotective properties of curcumin, bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and THC using molecular docking/dynamics, in-silico and in vitro studies. We measured the binding affinity, H-bonding capabilities of these compounds with amyloid beta protein (Aβ). Dot blot assays, photo-induced cross linking of unmodified protein (PICUP) and transmission electron microscopy (TEM) were performed to monitor the Aβ aggregation inhibition using these compounds. Neuroprotective effects of these derivatives were evaluated in N2a, CHO and SH-SY5Y cells using Aβ42 (10 µM) as a toxin. Finally, Aβ-binding capabilities were compared in the brain tissue derived from the 5× FAD mouse model of AD. We observed that THC had similar binding capability and Aβ aggregation inhibition such as keto/enol Cur and it was greater than BDMC and DMC. All these derivatives showed a similar degree of neuroprotection in vitro and labeled Aβ-plaques ex vivo. Overall, ECur and THC showed greater anti-amyloid properties than other derivatives. Therefore, THC, a more stable and bioavailable metabolite may provide greater therapeutic efficacy in AD than other turmeric derivatives.


2021 ◽  
Vol 22 (20) ◽  
pp. 10907
Author(s):  
Lara Ordóñez-Gutiérrez ◽  
Gemma Fábrias ◽  
Josefina Casas ◽  
Francisco Wandosell

Senile plaque formation as a consequence of amyloid-β peptide (Aβ) aggregation constitutes one of the main hallmarks of Alzheimer’s disease (AD). This pathology is characterized by synaptic alterations and cognitive impairment. In order to either prevent or revert it, different therapeutic approaches have been proposed, and some of them are focused on diet modification. Modification of the ω-6/ω-3 fatty acids (FA) ratio in diets has been proven to affect Aβ production and senile plaque formation in the hippocampus and cortex of female transgenic (TG) mice. In these diets, linoleic acid is the main contribution of ω-6 FA, whereas alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) are the contributors of ω-3 FA. In the present work, we have explored the effect of ω-6/ω-3 ratio modifications in the diets of male double-transgenic APPswe/PS1ΔE9 (AD model) and wild-type mice (WT). Amyloid burden in the hippocampus increased in parallel with the increase in dietary ω-6/ω-3 ratio in TG male mice. In addition, there was a modification in the brain lipid profile proportional to the ω-6/ω-3 ratio of the diet. In particular, the higher the ω-6/ω-3 ratio, the lower the ceramides and higher the FAs, particularly docosatetraenoic acid. Modifications to the cortex lipid profile was mostly similar between TG and WT mice, except for gangliosides (higher levels in TG mice) and some ceramide species (lower levels in TG mice).


Sign in / Sign up

Export Citation Format

Share Document