Comparison of bioimpedance spectroscopy and dual energy X-ray absorptiometry for assessing body composition changes in obese children during weight loss

Author(s):  
Eline Vermeiren ◽  
Marijke Ysebaert ◽  
Kim Van Hoorenbeeck ◽  
Luc Bruyndonckx ◽  
Kristof Van Dessel ◽  
...  
2011 ◽  
Vol 100 (12) ◽  
pp. e260-e266 ◽  
Author(s):  
P Breithaupt ◽  
RC Colley ◽  
KB Adamo

Metabolism ◽  
1997 ◽  
Vol 46 (9) ◽  
pp. 1059-1062 ◽  
Author(s):  
Evangelos Georgiou ◽  
Kyriakos Virvidakis ◽  
Gerasimos Douskas ◽  
Irene Lambrinoudaki ◽  
Sonia Voudiklari ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 1139
Author(s):  
Che-Cheng Chang ◽  
Yen-Kung Chen ◽  
Hou-Chang Chiu ◽  
Jiann-Horng Yeh

Sarcopenia and obesity can negatively impact quality of life and cause chronic fragility, and are associated with neuromuscular diseases, including myasthenia gravis (MG). The long-term consequences of body composition changes in chronic MG remain unknown; we therefore evaluated changes in body composition, including sarcopenia, obesity, lean body mass, and the prevalence of sarcopenic obesity in patients. In this cross-sectional study, 35 patients with MG (mean age: 56.1 years) and 175 matched controls were enrolled. Body fat mass and skeletal muscle mass were measured using whole body dual-energy X-ray absorptiometry. Patients with MG exhibited a higher prevalence of obesity and higher android adiposity and total body fat percentage than those of controls. Although the prevalence of sarcopenia and sarcopenic obesity did not increase with age, there was a decrease in arm and android muscle mass in patients with MG compared with controls. Lower muscle mass percentages were correlated with increased age and MG severity, but not with corticosteroid use. Thus, MG is associated with increased risk for obesity and decreased muscle mass with aging, regardless of corticosteroid use. Therefore, accurate diagnosis of body composition changes in MG could facilitate the application of appropriate therapies to promote health, improve quality of life, and prevent fragility.


Sports ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 112
Author(s):  
Jake R. Boykin ◽  
Grant M. Tinsley ◽  
Christine M. Harrison ◽  
Jessica Prather ◽  
Javier Zaragoza ◽  
...  

Tracking changes in body composition may provide key information about the effectiveness of training programs for athletes. This study reports on the agreement between bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA) for tracking body composition changes during a seven-week offseason training program in 29 NCAA collegiate American football players. Body composition in subjects (mean ± SD; age: 19.7 ± 1.5 y; height: 179.8 ± 6.6 cm; body mass (BM: 96.1 ± 12.6 kg; DXA body fat: 20.9 ± 4.4%) was estimated using BIA (InBody 770) and DXA (Hologic Horizon) before and after the training intervention. Repeated measures ANOVA and post hoc comparisons were performed. Longitudinal agreement between methods was also examined by concordance correlation coefficient (CCC) and Bland–Altman analysis alongside linear regression to identify bias. Significant method by time interactions were observed for BM (DXA: 1.1 ± 2.4 kg; BIA: 1.4 ± 2.5 kg; p < 0.03), arms fat-free mass (FFM) (DXA: 0.4 ± 0.5 kg; BIA: 0.2 ± 0.4 kg; p < 0.03), and legs FFM (DXA: 0.6 ± 1.1 kg; BIA: 0.1 ± 0.6 kg; p < 0.01). Post hoc comparisons indicated that DXA—but not BIA—detected increases in FFM of the arms and legs. Time main effects, but no method by time interactions, were observed for total FFM (DXA: 1.6 ± 1.9 kg; BIA: 1.2 ± 2.1 kg; p = 0.004) and trunk FFM (DXA: 0.7 ± 1.3 kg; BIA: 0.5 ± 1.0 kg; p = 0.02). Changes in total BM (CCC = 0.96), FFM (CCC = 0.49), and fat mass (CCC = 0.50) were significantly correlated between BIA and DXA. DXA and BIA may similarly track increases in whole-body FFM in American collegiate football players; however, BIA may possess less sensitivity in detecting segmental FFM increases, particularly in the appendages.


2003 ◽  
Vol 95 (5) ◽  
pp. 2039-2046 ◽  
Author(s):  
P. J. Gately ◽  
D. Radley ◽  
C. B. Cooke ◽  
S. Carroll ◽  
B. Oldroyd ◽  
...  

The objective of the present study was to investigate the accuracy of percent body fat (%fat) estimates from dual-energy X-ray absorptiometry, air-displacement plethysmography (ADP), and total body water (TBW) against a criterion four-compartment (4C) model in overweight and obese children. A volunteer sample of 30 children (18 male and 12 female), age of (mean ± SD) 14.10 ± 1.83 yr, body mass index of 31.6 ± 5.5 kg/m, and %fat (4C model) of 41.2 ± 8.2%, was assessed. Body density measurements were converted to %fat estimates by using the general equation of Siri (ADPSiri) (Siri WE. Techniques for Measuring Body Composition. 1961) and the age- and gender-specific constants of Lohman (ADPLoh) (Lohman TG. Exercise and Sport Sciences Reviews. 1986). TBW measurements were converted to %fat estimates by assuming that water accounts for 73% of fat-free mass (TBW73) and by utilizing the age- and gender-specific water contents of Lohman (TBWLoh). All estimates of %fat were highly correlated with those of the 4C model ( r ≥ 0.95, P < 0.001; SE ≤ 2.14). For %fat, the total error and mean difference ± 95% limits of agreement compared with the 4C model were 2.50, 1.8 ± 3.5 (ADPSiri); 1.82, -0.04 ± 3.6 (ADPLoh); 2.86, -2.0 ± 4.1 (TBW73); 1.90, -0.3 ± 3.8 (TBWLoh); and 2.74, 1.9 ± 4.0 DXA (dual-energy X-ray absorptiometry), respectively. In conclusion, in overweight and obese children, ADPLoh and TBWLoh were the most accurate methods of measuring %fat compared with a 4C model. However, all methods under consideration produced similar limits of agreement.


Sign in / Sign up

Export Citation Format

Share Document