scholarly journals Contributions of de novo variants to systemic lupus erythematosus

2020 ◽  
Vol 29 (1) ◽  
pp. 184-193 ◽  
Author(s):  
Jonas Carlsson Almlöf ◽  
Sara Nystedt ◽  
Aikaterini Mechtidou ◽  
Dag Leonard ◽  
Maija-Leena Eloranta ◽  
...  

AbstractBy performing whole-genome sequencing in a Swedish cohort of 71 parent-offspring trios, in which the child in each family is affected by systemic lupus erythematosus (SLE, OMIM 152700), we investigated the contribution of de novo variants to risk of SLE. We found de novo single nucleotide variants (SNVs) to be significantly enriched in gene promoters in SLE patients compared with healthy controls at a level corresponding to 26 de novo promoter SNVs more in each patient than expected. We identified 12 de novo SNVs in promoter regions of genes that have been previously implicated in SLE, or that have functions that could be of relevance to SLE. Furthermore, we detected three missense de novo SNVs, five de novo insertion-deletions, and three de novo structural variants with potential to affect the expression of genes that are relevant for SLE. Based on enrichment analysis, disease-affecting de novo SNVs are expected to occur in one-third of SLE patients. This study shows that de novo variants in promoters commonly contribute to the genetic risk of SLE. The fact that de novo SNVs in SLE were enriched to promoter regions highlights the importance of using whole-genome sequencing for identification of de novo variants.

2019 ◽  
Vol 138 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Jonas Carlsson Almlöf ◽  
Sara Nystedt ◽  
Dag Leonard ◽  
Maija-Leena Eloranta ◽  
Giorgia Grosso ◽  
...  

2020 ◽  
Author(s):  
EL Bogenschutz ◽  
ZD Fox ◽  
A Farrell ◽  
J Wynn ◽  
B Moore ◽  
...  

ABSTRACTThe diaphragm is a mammalian muscle critical for respiration and separation of the thoracic and abdominal cavities. Defects in the development of the diaphragm are the cause of congenital diaphragmatic hernia (CDH), a common birth defect. In CDH, weaknesses in the developing diaphragm allow abdominal contents to herniate into the thoracic cavity and impair lung development, leading to a high neonatal mortality. The genetic etiology of CDH is complex. Single nucleotide variants (SNVs), insertion/deletions (indels), and structural/copy number variants in more than 150 genes have been associated with CDH, although few genes are recurrently mutated in multiple patients and recurrently mutated genes can be incompletely penetrant. This suggests that multiple genetic variants in combination, other not yet investigated classes of variants, and/or nongenetic factors contribute to CDH susceptibility. However, to date no studies have comprehensively investigated the contribution of all possible classes of variants throughout the genome to the etiology of CDH. In our study, we used a unique cohort of four patients with isolated CDH with samples from blood, skin, and diaphragm connective tissue and parental blood samples and deep whole genome sequencing to assess germline and somatic de novo and inherited variants of various sizes (SNVs, indels, and structural variants) in exons, introns, UTRs, and intergenic regions. In each patient we found a different mutational landscape that included germline de novo, and inherited SNVs and indels in multiple genes. We also found in two patients an inherited 343 bp deletion interrupting an annotated enhancer of the CDH associated gene, GATA4, and we hypothesize that this common deletion (found in 1-2% of the population) acts as a sensitizing allele for CDH. Overall, our comprehensive reconstruction of the genetic architecture of four CDH individuals demonstrates that the etiology of CDH is heterogeneous and multifactorial.AUTHOR SUMMARYDeep whole genome sequencing of family trios shows that etiology of congenital diaphragmatic hernias is heterogeneous and multifactorial.


2018 ◽  
Author(s):  
Elizabeth K. Ruzzo ◽  
Laura Pérez-Cano ◽  
Jae-Yoon Jung ◽  
Lee-kai Wang ◽  
Dorna Kashef-Haghighi ◽  
...  

AbstractGenetic studies of autism spectrum disorder (ASD) have revealed a complex, heterogeneous architecture, in which the contribution of rare inherited variation remains relatively un-explored. We performed whole-genome sequencing (WGS) in 2,308 individuals from families containing multiple affected children, including analysis of single nucleotide variants (SNV) and structural variants (SV). We identified 16 new ASD-risk genes, including many supported by inherited variation, and provide statistical support for 69 genes in total, including previously implicated genes. These risk genes are enriched in pathways involving negative regulation of synaptic transmission and organelle organization. We identify a significant protein-protein interaction (PPI) network seeded by inherited, predicted damaging variants disrupting highly constrained genes, including members of the BAF complex and established ASD risk genes. Analysis of WGS also identified SVs effecting non-coding regulatory regions in developing human brain, implicating NR3C2 and a recurrent 2.5Kb deletion within the promoter of DLG2. These data lend support to studying multiplex families for identifying inherited risk for ASD. We provide these data through the Hartwell Autism Research and Technology Initiative (iHART), an open access cloud-computing repository for ASD genetics research.


2017 ◽  
Vol 63 (3) ◽  
pp. 357-363 ◽  
Author(s):  
Makiko Horai ◽  
Hiroyuki Mishima ◽  
Chisa Hayashida ◽  
Akira Kinoshita ◽  
Yoshibumi Nakane ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brent S. Pedersen ◽  
Joe M. Brown ◽  
Harriet Dashnow ◽  
Amelia D. Wallace ◽  
Matt Velinder ◽  
...  

AbstractIn studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality, sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations for best practices for rare disease analysis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253440
Author(s):  
Samantha Gunasekera ◽  
Sam Abraham ◽  
Marc Stegger ◽  
Stanley Pang ◽  
Penghao Wang ◽  
...  

Whole-genome sequencing is essential to many facets of infectious disease research. However, technical limitations such as bias in coverage and tagmentation, and difficulties characterising genomic regions with extreme GC content have created significant obstacles in its use. Illumina has claimed that the recently released DNA Prep library preparation kit, formerly known as Nextera Flex, overcomes some of these limitations. This study aimed to assess bias in coverage, tagmentation, GC content, average fragment size distribution, and de novo assembly quality using both the Nextera XT and DNA Prep kits from Illumina. When performing whole-genome sequencing on Escherichia coli and where coverage bias is the main concern, the DNA Prep kit may provide higher quality results; though de novo assembly quality, tagmentation bias and GC content related bias are unlikely to improve. Based on these results, laboratories with existing workflows based on Nextera XT would see minor benefits in transitioning to the DNA Prep kit if they were primarily studying organisms with neutral GC content.


2018 ◽  
Author(s):  
Maxime Garcia ◽  
Szilveszter Juhos ◽  
Malin Larsson ◽  
Pall I. Olason ◽  
Marcel Martin ◽  
...  

AbstractSummaryWhole-genome sequencing (WGS) is a cornerstone of precision medicine, but portable and reproducible open-source workflows for WGS analyses of germline and somatic variants are lacking. We present Sarek, a modular, comprehensive, and easy-to-install workflow, combining a range of software for the identification and annotation of single-nucleotide variants (SNVs), insertion and deletion variants (indels), structural variants, tumor sample heterogeneity, and karyotyping from germline or paired tumor/normal samples. Sarek is implemented in a bioinformatics workflow language (Nextflow) with Docker and Singularity compatible containers, ensuring easy deployment and full reproducibility at any Linux based compute cluster or cloud computing environment. Sarek supports the human reference genomes GRCh37 and GRCh38, and can readily be used both as a core production workflow at sequencing facilities and as a powerful stand-alone tool for individual research groups.AvailabilitySource code and instructions for local installation are available at GitHub (https://github.com/SciLifeLab/Sarek) under the MIT open-source license, and we invite the research community to contribute additional functionality as a collaborative open-source development project.


Sign in / Sign up

Export Citation Format

Share Document