scholarly journals Whole genome sequencing in multiplex families reveals novel inherited and de novo genetic risk in autism

2018 ◽  
Author(s):  
Elizabeth K. Ruzzo ◽  
Laura Pérez-Cano ◽  
Jae-Yoon Jung ◽  
Lee-kai Wang ◽  
Dorna Kashef-Haghighi ◽  
...  

AbstractGenetic studies of autism spectrum disorder (ASD) have revealed a complex, heterogeneous architecture, in which the contribution of rare inherited variation remains relatively un-explored. We performed whole-genome sequencing (WGS) in 2,308 individuals from families containing multiple affected children, including analysis of single nucleotide variants (SNV) and structural variants (SV). We identified 16 new ASD-risk genes, including many supported by inherited variation, and provide statistical support for 69 genes in total, including previously implicated genes. These risk genes are enriched in pathways involving negative regulation of synaptic transmission and organelle organization. We identify a significant protein-protein interaction (PPI) network seeded by inherited, predicted damaging variants disrupting highly constrained genes, including members of the BAF complex and established ASD risk genes. Analysis of WGS also identified SVs effecting non-coding regulatory regions in developing human brain, implicating NR3C2 and a recurrent 2.5Kb deletion within the promoter of DLG2. These data lend support to studying multiplex families for identifying inherited risk for ASD. We provide these data through the Hartwell Autism Research and Technology Initiative (iHART), an open access cloud-computing repository for ASD genetics research.

2020 ◽  
Vol 29 (1) ◽  
pp. 184-193 ◽  
Author(s):  
Jonas Carlsson Almlöf ◽  
Sara Nystedt ◽  
Aikaterini Mechtidou ◽  
Dag Leonard ◽  
Maija-Leena Eloranta ◽  
...  

AbstractBy performing whole-genome sequencing in a Swedish cohort of 71 parent-offspring trios, in which the child in each family is affected by systemic lupus erythematosus (SLE, OMIM 152700), we investigated the contribution of de novo variants to risk of SLE. We found de novo single nucleotide variants (SNVs) to be significantly enriched in gene promoters in SLE patients compared with healthy controls at a level corresponding to 26 de novo promoter SNVs more in each patient than expected. We identified 12 de novo SNVs in promoter regions of genes that have been previously implicated in SLE, or that have functions that could be of relevance to SLE. Furthermore, we detected three missense de novo SNVs, five de novo insertion-deletions, and three de novo structural variants with potential to affect the expression of genes that are relevant for SLE. Based on enrichment analysis, disease-affecting de novo SNVs are expected to occur in one-third of SLE patients. This study shows that de novo variants in promoters commonly contribute to the genetic risk of SLE. The fact that de novo SNVs in SLE were enriched to promoter regions highlights the importance of using whole-genome sequencing for identification of de novo variants.


2015 ◽  
Author(s):  
Laura T Jiménez-Barrón ◽  
Jason A O'Rawe ◽  
Yiyang Wu ◽  
Margaret Yoon ◽  
Han Fang ◽  
...  

Autism spectrum disorders (ASD) are a group of developmental disabilities that affect social interaction, communication and are characterized by repetitive behaviors. There is now a large body of evidence that suggests a complex role of genetics in ASD, in which many different loci are involved. Although many current population scale genomic studies have been demonstrably fruitful, these studies generally focus on analyzing a limited part of the genome or use a limited set of bioinformatics tools. These limitations preclude the analysis of genome-wide perturbations that may contribute to the development and severity of ASD-related phenotypes. To overcome these limitations, we have developed and utilized an integrative clinical and bioinformatics pipeline for generating a more complete and reliable set of genomic variants for downstream analyses. Our study focuses on the analysis of three simplex autism families consisting of one affected child, unaffected parents, and one unaffected sibling. All members were clinically evaluated and widely phenotyped. Genotyping arrays and whole genome sequencing were performed on each member, and the resulting sequencing data were analyzed using a variety of available bioinformatics tools. We searched for rare variants of putative functional impact that were found to be segregating according to de-novo, autosomal recessive, x-linked, mitochondrial and compound heterozygote transmission models. The resulting candidate variants included three small heterozygous CNVs, a rare heterozygous de novo nonsense mutation in MYBBP1A located within exon 1, and a novel de novo missense variant in LAMB3. Our work demonstrates how more comprehensive analyses that include rich clinical data and whole genome sequencing data can generate reliable results for use in downstream investigations. We are moving to implement our framework for the analysis and study of larger cohorts of families, where statistical rigor can accompany genetic findings.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0116358 ◽  
Author(s):  
Sergio I. Nemirovsky ◽  
Marta Córdoba ◽  
Jonathan J. Zaiat ◽  
Sabrina P. Completa ◽  
Patricia A. Vega ◽  
...  

2020 ◽  
Author(s):  
EL Bogenschutz ◽  
ZD Fox ◽  
A Farrell ◽  
J Wynn ◽  
B Moore ◽  
...  

ABSTRACTThe diaphragm is a mammalian muscle critical for respiration and separation of the thoracic and abdominal cavities. Defects in the development of the diaphragm are the cause of congenital diaphragmatic hernia (CDH), a common birth defect. In CDH, weaknesses in the developing diaphragm allow abdominal contents to herniate into the thoracic cavity and impair lung development, leading to a high neonatal mortality. The genetic etiology of CDH is complex. Single nucleotide variants (SNVs), insertion/deletions (indels), and structural/copy number variants in more than 150 genes have been associated with CDH, although few genes are recurrently mutated in multiple patients and recurrently mutated genes can be incompletely penetrant. This suggests that multiple genetic variants in combination, other not yet investigated classes of variants, and/or nongenetic factors contribute to CDH susceptibility. However, to date no studies have comprehensively investigated the contribution of all possible classes of variants throughout the genome to the etiology of CDH. In our study, we used a unique cohort of four patients with isolated CDH with samples from blood, skin, and diaphragm connective tissue and parental blood samples and deep whole genome sequencing to assess germline and somatic de novo and inherited variants of various sizes (SNVs, indels, and structural variants) in exons, introns, UTRs, and intergenic regions. In each patient we found a different mutational landscape that included germline de novo, and inherited SNVs and indels in multiple genes. We also found in two patients an inherited 343 bp deletion interrupting an annotated enhancer of the CDH associated gene, GATA4, and we hypothesize that this common deletion (found in 1-2% of the population) acts as a sensitizing allele for CDH. Overall, our comprehensive reconstruction of the genetic architecture of four CDH individuals demonstrates that the etiology of CDH is heterogeneous and multifactorial.AUTHOR SUMMARYDeep whole genome sequencing of family trios shows that etiology of congenital diaphragmatic hernias is heterogeneous and multifactorial.


2018 ◽  
Vol 102 (6) ◽  
pp. 1031-1047 ◽  
Author(s):  
Yuwen Liu ◽  
Yanyu Liang ◽  
A. Ercument Cicek ◽  
Zhongshan Li ◽  
Jinchen Li ◽  
...  

2016 ◽  
Author(s):  
Yuwen Liu ◽  
Yanyu Liang ◽  
A. Ercument Cicek ◽  
Zhongshan Li ◽  
Jinchen Li ◽  
...  

AbstractAnalysis of de novo mutations (DNMs) from sequencing data of nuclear families has identified risk genes for many complex diseases, including multiple neurodevelopmental and psychiatric disorders. Most of these efforts have focused on mutations in protein-coding sequences. Evidence from genome-wide association studies (GWAS) strongly suggests that variants important to human diseases often lie in non-coding regions. Extending DNM-based approaches to non-coding sequences is, however, challenging because the functional significance of non-coding mutations is difficult to predict. We propose a new statistical framework for analyzing DNMs from whole-genome sequencing (WGS) data. This method, TADA-Annotations (TADA-A), is a major advance of the TADA method we developed earlier for DNM analysis in coding regions. TADA-A is able to incorporate many functional annotations such as conservation and enhancer marks, learn from data which annotations are informative of pathogenic mutations and combine both coding and non-coding mutations at the gene level to detect risk genes. It also supports meta-analysis of multiple DNM studies, while adjusting for study-specific technical effects. We applied TADA-A to WGS data of ∼300 autism family trios across five studies, and discovered several new autism risk genes. The software is freely available for all research uses.


2017 ◽  
Vol 63 (3) ◽  
pp. 357-363 ◽  
Author(s):  
Makiko Horai ◽  
Hiroyuki Mishima ◽  
Chisa Hayashida ◽  
Akira Kinoshita ◽  
Yoshibumi Nakane ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brent S. Pedersen ◽  
Joe M. Brown ◽  
Harriet Dashnow ◽  
Amelia D. Wallace ◽  
Matt Velinder ◽  
...  

AbstractIn studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality, sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations for best practices for rare disease analysis.


Sign in / Sign up

Export Citation Format

Share Document