scholarly journals CsWAKL08, a pathogen-induced wall-associated receptor-like kinase in sweet orange, confers resistance to citrus bacterial canker via ROS control and JA signaling

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Qiang Li ◽  
Anhua Hu ◽  
Jingjing Qi ◽  
Wanfu Dou ◽  
Xiujuan Qin ◽  
...  
2020 ◽  
Vol 21 (24) ◽  
pp. 9429
Author(s):  
Qiang Li ◽  
Jia Fu ◽  
Xiujuan Qin ◽  
Wen Yang ◽  
Jingjing Qi ◽  
...  

The present study was designed to serve as a comprehensive analysis of Citrus sinensis (C. sinensis) pectin acetylesterases (CsPAEs), and to assess the roles of these PAEs involved in the development of citrus bacterial canker (CBC) caused by Xanthomonas citri subsp. citri (Xcc) infection. A total of six CsPAEs were identified in the genome of C. sinensis, with these genes being unevenly distributed across chromosomes 3, 6, and 9, and the unassembled scaffolds. A subset of CsPAEs were found to be involved in responses to Xcc infection. In particular, CsPAE2 was identified to be associated with such infections, as it was upregulated in CBC-susceptible variety Wanjincheng and inversely in CBC-resistant variety Calamondin. Transgenic citrus plants overexpressing CsPAE2 were found to be more susceptible to CBC, whereas the silencing of this gene was sufficient to confer CBC resistance. Together, these findings provide evolutionary insights into and functional information about the CsPAE family. This study also suggests that CsPAE2 is a potential candidate gene that negatively contributes to bacterial canker disease and can be used to breed CBC-resistant citrus plants.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Qiang Li ◽  
Xiujuan Qin ◽  
Jingjing Qi ◽  
Wanfu Dou ◽  
Christophe Dunand ◽  
...  

AbstractCitrus bacterial canker (CBC) results from Xanthomonas citri subsp. citri (Xcc) infection and poses a grave threat to citrus production. Class III peroxidases (CIII Prxs) are key proteins to the environmental adaptation of citrus plants to a range of exogenous pathogens, but the role of CIII Prxs during plant resistance to CBC is poorly defined. Herein, we explored the role of CsPrx25 and its contribution to plant defenses in molecular detail. Based on the expression analysis, CsPrx25 was identified as an apoplast-localized protein that is differentially regulated by Xcc infection, salicylic acid, and methyl jasmone acid in the CBC-susceptible variety Wanjincheng (C. sinensis) and the CBC-resistant variety Calamondin (C. madurensis). Transgenic Wanjincheng plants overexpressing CsPrx25 were generated, and these transgenic plants exhibited significantly increased CBC resistance compared with the WT plants. In addition, the CsPrx25-overexpressing plants displayed altered reactive oxygen species (ROS) homeostasis accompanied by enhanced H2O2 levels, which led to stronger hypersensitivity responses during Xcc infection. Moreover, the overexpression of CsPrx25 enhanced lignification as an apoplastic barrier for Xcc infection. Taken together, the results highlight how CsPrx25-mediated ROS homeostasis reconstruction and cell wall lignification can enhance the resistance of sweet orange to CBC.


Sign in / Sign up

Export Citation Format

Share Document