Label-free electrochemical immunosensor based on electrodeposited Prussian blue and gold nanoparticles for sensitive detection of citrus bacterial canker disease

2018 ◽  
Vol 275 ◽  
pp. 61-68 ◽  
Author(s):  
Hedieh Haji-Hashemi ◽  
Mohammad Mahdi Habibi ◽  
Mohammad Reza Safarnejad ◽  
Parviz Norouzi ◽  
Mohammad Reza Ganjali
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rozita Abolhasan ◽  
Balal Khalilzadeh ◽  
Hadi Yousefi ◽  
Sahar Samemaleki ◽  
Forough Chakari-Khiavi ◽  
...  

AbstractIn the present article, we developed a highly sensitive label-free electrochemical immunosensor based on NiFe-layered double hydroxides (LDH)/reduced graphene oxide (rGO)/gold nanoparticles modified glassy carbon electrode for the determination of receptor tyrosine kinase-like orphan receptor (ROR)-1. In this electrochemical immunoassay platform, NiFe-LDH/rGO was used due to great electron mobility, high specific surface area and flexible structures, while Au nanoparticles were prepared and coated on the modified electrodes to improve the detection sensitivity and ROR1 antibody immobilizing (ROR1Ab). The modification procedure was approved by using cyclic voltammetry and differential pulse voltammetry based on the response of peak current to the step by step modifications. Under optimum conditions, the experimental results showed that the immunosensor revealed a sensitive response to ROR1 in the range of 0.01–1 pg mL−1, and with a lower limit of quantification of 10 attogram/mL (10 ag mL−1). Furthermore, the designed immunosensor was applied for the analysis of ROR1 in several serum samples of chronic lymphocytic leukemia suffering patients with acceptable results, and it also exhibited good selectivity, reproducibility and stability.


RSC Advances ◽  
2015 ◽  
Vol 5 (70) ◽  
pp. 56583-56589 ◽  
Author(s):  
Yulan Wang ◽  
Dan Wu ◽  
Yong Zhang ◽  
Xiang Ren ◽  
Yaoguang Wang ◽  
...  

In this work, a novel and ultrasensitive label-free electrochemical immunosensor was developed for the quantitative detection of alpha fetoprotein (AFP).


2020 ◽  
Vol 21 (24) ◽  
pp. 9429
Author(s):  
Qiang Li ◽  
Jia Fu ◽  
Xiujuan Qin ◽  
Wen Yang ◽  
Jingjing Qi ◽  
...  

The present study was designed to serve as a comprehensive analysis of Citrus sinensis (C. sinensis) pectin acetylesterases (CsPAEs), and to assess the roles of these PAEs involved in the development of citrus bacterial canker (CBC) caused by Xanthomonas citri subsp. citri (Xcc) infection. A total of six CsPAEs were identified in the genome of C. sinensis, with these genes being unevenly distributed across chromosomes 3, 6, and 9, and the unassembled scaffolds. A subset of CsPAEs were found to be involved in responses to Xcc infection. In particular, CsPAE2 was identified to be associated with such infections, as it was upregulated in CBC-susceptible variety Wanjincheng and inversely in CBC-resistant variety Calamondin. Transgenic citrus plants overexpressing CsPAE2 were found to be more susceptible to CBC, whereas the silencing of this gene was sufficient to confer CBC resistance. Together, these findings provide evolutionary insights into and functional information about the CsPAE family. This study also suggests that CsPAE2 is a potential candidate gene that negatively contributes to bacterial canker disease and can be used to breed CBC-resistant citrus plants.


2016 ◽  
Vol 40 (11) ◽  
pp. 9046-9053 ◽  
Author(s):  
Sudeshna Chandra ◽  
Christian Gäbler ◽  
Christian Schliebe ◽  
Heinrich Lang ◽  
Dhirendra Bahadur

An amperometric immunosensor based on a redox active ferrocenyl end-grafted PAMAM dendrimer provides highly sensitive detection of immunoglobulin, down to 2 ng mL−1.


The Analyst ◽  
2018 ◽  
Vol 143 (21) ◽  
pp. 5278-5284 ◽  
Author(s):  
Meng Wang ◽  
Xianwen Kan

An exfoliated graphite paper based multilayer sensing platform was fabricated and applied for sensitive detection of NADH and H2O2.


Sign in / Sign up

Export Citation Format

Share Document