scholarly journals Ensa controls S-phase length by modulating Treslin levels

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Sophie Charrasse ◽  
Aicha Gharbi-Ayachi ◽  
Andrew Burgess ◽  
Jorge Vera ◽  
Khaled Hached ◽  
...  
Keyword(s):  
S Phase ◽  
PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1008948
Author(s):  
Vincent Gaggioli ◽  
Manuela R. Kieninger ◽  
Anna Klucnika ◽  
Richard Butler ◽  
Philip Zegerman

During metazoan development, the cell cycle is remodelled to coordinate proliferation with differentiation. Developmental cues cause dramatic changes in the number and timing of replication initiation events, but the mechanisms and physiological importance of such changes are poorly understood. Cyclin-dependent kinases (CDKs) are important for regulating S-phase length in many metazoa, and here we show in the nematode Caenorhabditis elegans that an essential function of CDKs during early embryogenesis is to regulate the interactions between three replication initiation factors SLD-3, SLD-2 and MUS-101 (Dpb11/TopBP1). Mutations that bypass the requirement for CDKs to generate interactions between these factors is partly sufficient for viability in the absence of Cyclin E, demonstrating that this is a critical embryonic function of this Cyclin. Both SLD-2 and SLD-3 are asymmetrically localised in the early embryo and the levels of these proteins inversely correlate with S-phase length. We also show that SLD-2 asymmetry is determined by direct interaction with the polarity protein PKC-3. This study explains an essential function of CDKs for replication initiation in a metazoan and provides the first direct molecular mechanism through which polarization of the embryo is coordinated with DNA replication initiation factors.


2010 ◽  
Vol 20 (23) ◽  
pp. 2067-2077 ◽  
Author(s):  
Antony W. Shermoen ◽  
Mark L. McCleland ◽  
Patrick H. O'Farrell

2000 ◽  
Vol 14 (4) ◽  
pp. 493-503 ◽  
Author(s):  
Rita S. Cha ◽  
Beth M. Weiner ◽  
Scott Keeney ◽  
Job Dekker ◽  
N. Kleckner

Spo11p is a key mediator of interhomolog interactions during meiosis. Deletion of the SPO11 gene decreases the length of S phase by ∼25%. Rec8p is a key coordinator of meiotic interhomolog and intersister interactions. Deletion of the REC8 gene increases S-phase length, by ∼10% in wild-type and ∼30% in aspo11Δ background. Thus, the progression of DNA replication is modulated by interchromosomal interaction proteins. Thespo11–Y135F DSB (double strand break) catalysis-defective mutant is normal for S-phase modulation and DSB-independent homolog pairing but is defective for later events, formation of DSBs, and synaptonemal complexes. Thus, earlier and later functions of Spo11 are defined. We propose that meiotic S-phase progression is linked directly to development of specific chromosomal features required for meiotic interhomolog interactions and that this feedback process is built upon a more fundamental mechanism, common to all cell types, by which S-phase progression is coupled to development of nascent intersister connections and/or related aspects of chromosome morphogenesis. Roles for Rec8 and/or Spo11 in progression through other stages of meiosis are also revealed.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Betheney R. Pennycook ◽  
Eva Vesela ◽  
Silvia Peripolli ◽  
Tanya Singh ◽  
Alexis R. Barr ◽  
...  

2015 ◽  
Vol 104 (3) ◽  
pp. e338
Author(s):  
J.A. Aguilar ◽  
E. Munoz ◽  
A. Galan ◽  
Y. Motato ◽  
M. Ojeda ◽  
...  

2020 ◽  
Author(s):  
Vincent Gaggioli ◽  
Manuela R. Kieninger ◽  
Anna Klucnika ◽  
Richard Butler ◽  
Philip Zegerman

AbstractDuring metazoan development, the cell cycle is remodelled to coordinate proliferation with differentiation. Developmental cues cause dramatic changes in the number and timing of replication initiation events, but the mechanisms and physiological importance of such changes are poorly understood. Cyclin-dependent kinase (CDK) is important for regulating S-phase length in many metazoa, and here we show in the nematode Caenorhabditis elegans that an essential function of CDK during early embryogenesis is to regulate the interactions between three replication initiation factors SLD-3, SLD-2 and MUS-101 (Dpb11/TopBP1). Mutations that bypass the requirement for CDK to generate interactions between these factors is sufficient for viability in the absence of CyclinE/Cdk2, demonstrating that this is a critical embryonic function of this cyclin/CDK complex. Both SLD-2 and SLD-3 are asymmetrically localised in the early embryo and the levels of these proteins inversely correlate with S-phase length. We also show that SLD-2 asymmetry is determined by direct interaction with the polarity protein PKC-3. This study explains the essential function of CDK for replication initiation in a metazoan and provides the first direct molecular mechanism through which polarization of the embryo is coordinated with DNA replication initiation.Author SummaryHow and when a cell divides changes as the cell assumes different fates. How these changes in cell division are brought about are poorly understood, but are critical to ensure that cells do not over-proliferate leading to cancer. The nematode C. elegans is an excellent system to study the role of cell cycle changes during animal development. Here we show that two factors SLD-2 and SLD-3 are critical to control the decision to begin genome duplication. We show that these factors are differently distributed to different cell lineages in the early embryo, which may be a key event in determining the cell cycle rate in these cells. For the first time we show that, PKC-3, a key component of the machinery that determines the front (anterior) from the back (posterior) of the embryo directly controls SLD-2 distribution, which might explain how the polarisation of the embryo causes changes in the proliferation of different cell lineages. As PKC-3 is frequently mutated in human cancers, how this factor controls cell proliferation may be important to understand tumour progression.


Sign in / Sign up

Export Citation Format

Share Document